Skip to main content
Log in

Correlation Dimension

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In many situations, both deterministic and probabilistic, one can develop further the study of the multifractal structure of a dynamical system, particularly when there exist strange attractors. Multifractal refers to a notion of size emphasizing the variations of the weigth of the measure. In such schemes, one has to compute a free energy function associated to some sequence of partitions. We relate the free energy function, associated to a sequence of uniform partitions of exponentially decreasing diameters, and the correlation dimension which refers to a quantity that is the most accessible in numerical computations. Finally we discuss of two assumptions for the existence of free energy functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics 470 (1973).

  2. G. Brown, G. Michon, and J. Peyriere, On the multifractal analysis of measures, Journal of Statistical Physics 66:775-790 (1992).

    Google Scholar 

  3. P. Collet and F. Koukiou, Large deviations for multiplicative chaos, Commun. Math. Phys. 147:329-342 (1992).

    Google Scholar 

  4. P. Collet, J.-L. Lebowitz, and A. Porzio, Dimension spectrum of some dynamical systems, Journal of Statistical Physics 47:609-644 (1987).

    Google Scholar 

  5. J. Cook and B. Derrida, Finite size in random energy models and in the problem of polymers in a random medium, Journal of Statistical Physics 63:505-539 (1991).

    Google Scholar 

  6. C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergod. Th. and Dyn. Syst. 10:451-462 (1990).

    Google Scholar 

  7. B. Derrida and H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves, Journal of Statistical Physics 51:817-840 (1988).

    Google Scholar 

  8. J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57:617-653 (1985).

    Google Scholar 

  9. G. A. Edgar and R. D. Mauldin, Multifractal decomposition of digraph recursive fractals, Proc. London Math. Soc. 3(65):604-628 (1992).

    Google Scholar 

  10. J. Franchi, Chaos multiplicatif: un traitement simple et complet de la fonction de partition, Lecture Notes in Mathematics 1613, 194-201 (1995).

  11. P. Grassberger, V. Hentschel, and I. Procaccia, On the characterization of chaotic motions, Lect. Notes Physics 179, 212-221 (1983).

  12. M. de Guzmán, Differentiation of integrals inn, Lecture Notes in Mathematics 481 (1975).

  13. T. C. Hasley, M. H. Jensen, L. P. Kadanoff, I. Proccacia, and B. I. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A 33:1141-1151 (1986).

    Google Scholar 

  14. H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Physica D, 435-444 (1983).

  15. R. Holley and E. Waymire, Multifractal dimensions and scaling exponents for strongly bounded random cascades, Ann. of App. Prob. 2(4):819-845 (1992).

    Google Scholar 

  16. J.-P. Kahane, Sur le modèle de turbulence de B. Mandelbrot, C.R.A.S. série A 278:621-623 (1974).

    Google Scholar 

  17. J.-P. Kahane and J. Peyrière, Sur certaines martingales de B. Mandelbrot. Adv. in Math. 22:131-145 (1976).

    Google Scholar 

  18. F. Ledrappier, On the dimension of some graphs, Contemp. Maths. 135, 285-293 (1992).

    Google Scholar 

  19. F. Ledrappier and M. Misiurewicz, Dimension of invariant measures for maps with exponent zero, Ergod. Th. and Dyn. Syst. 5, 545-556 (1985).

    Google Scholar 

  20. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part I: Characterization of Measures satisfying Pesin's entopy formula, Ann. of Math. 122:509-539 (1985).

    Google Scholar 

  21. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part II: Relations between entropy, exponents and dimension, Ann. of Math. 122:540-574 (1985).

    Google Scholar 

  22. R. Mañé, The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Bol. Soc. Bras. Mat. 20(2):1-24 (1990).

    Google Scholar 

  23. A. Manning, A relation between Lyapunov exponents, Hausdorff dimension and entropy, Ergod. Th. and Dyn. Syst. 1:451-459 (1981).

    Google Scholar 

  24. C. McMullen, The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J. 96:1-9 (1984).

    Google Scholar 

  25. L. Olsen, Self-affine multifractal Sierpinski sponges in ℝd, To appear in Pac. Jour. Math. (1996).

  26. Ya. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions, Journal of Statistical Physics 71:529-547 (1993).

    Google Scholar 

  27. Y. B. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions, Random & Comput. Dynam. 3:137-156 (1995).

    Google Scholar 

  28. D. A. Rand, The singularity spectrum f(α) for cookie-cutters, Ergod. Th. and Dyn. Syst. 9:527-541 (1989).

    Google Scholar 

  29. D. Ruelle, Thermodynamic Formalism. (Addison-Wesley, 1978).

  30. M. A. Shereshevski, A complement to Young's theorem on measure dimension: the difference between lower and upper pointwise dimensions, Nonlinearity 4:15-25 (1991).

    Google Scholar 

  31. D. Simpelaere, Dimension spectrum of Axiom A diffeomorphisms. I: The Bowen-Margulis measure. II: Gibbs measures, Journal of Statistical Physics 76:1329-1375 (1994).

    Google Scholar 

  32. D. Simpelaere, The correlation dimension of the Sierpinski carpet, Chaos, Solitons & Fractals 12:2223-2235 (1994).

    Google Scholar 

  33. D. Simpelaere, Mean of the singularities of a Gibbs measure, Comm. Math. Phys. 179:489-510 (1996).

    Google Scholar 

  34. L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. and Dyn. Syst. 2:109-124 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpelaere, D. Correlation Dimension. Journal of Statistical Physics 90, 491–509 (1998). https://doi.org/10.1023/A:1023232624745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023232624745

Navigation