Skip to main content
Log in

Traffic Flow Models Considering an Internal Degree of Freedom

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We solve numerically the integrodifferential equation for the equilibrium case of Paveri–Fontana's Boltzmann-like traffic equation. Beside space and actual velocity, Paveri–Fontana used an additional phase space variable, the desired velocity, to distinguish between the various driver characters. We refine his kinetic equation by introducing a modified cross section in order to incorporate finite vehicle length. We then calculate from the equilibrium solution the mean-velocity–density relation and investigate its dependence on the imposed desired velocity distribution. A further modification is made by modeling the interaction as an imperfect showing-down process. We find that the velocity cumulants of the stationary homogeneous solution essentially only depend on the first two cumulants, but not on the exact shape of the imposed desired velocity distribution. The equilibrium solution can therefore be approximated by a bivariate Gaussian distribution which is in agreement with empirical velocity distributions. From the improved kinetic equation we then derive a macroscopic model by neglecting third and higher order cumulants. The equilibrium solution of the macroscopic model is compared with the cumulants of the kinetic equilibrium solution and shows good agreement, thus justifying the closure assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Lighthill and G. B. Whitham, Proc. R. Soc. London Ser. A 229:317 (1955); G. B. Whitham, Linear and Nonlinear Waves(Wiley & Sons, 1974).

    Google Scholar 

  2. B. Kerner and P. Kohnhäuser, Phys. Rev. E 48:R2335 (1993).

    Google Scholar 

  3. D. Helbing, Physica A 219:375 (1995); Physica A 219:391 (1995).

    Google Scholar 

  4. G. F. Newell, Oper. Res. 9:209 (1961).

    Google Scholar 

  5. M. Bando et al., J. Phys. I France 5:1389 (1995).

    Google Scholar 

  6. K. Nagel and M. Schreckenberg, J. Phys. I France 2:2221 (1992).

    Google Scholar 

  7. K. Nagel, Phys. Rev. E 53:4655 (1996).

    Google Scholar 

  8. T. Nagatani, Physica A 218:145 (1995); Phys. Rev. E 51:92 (1995).

    Google Scholar 

  9. I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic(Elsevier, New York, 1971).

    Google Scholar 

  10. C. Wagner et al., Phys. Rev. E 54:5073 (1996).

    Google Scholar 

  11. S. L. Paveri-Fontana, Trans. Res. 9:225 (1975).

    Google Scholar 

  12. W. F. Phillips, Rep. No. DOT/RSPD/DPB/50-77/17, Mech. Eng. Dept., Utah State University, Logan Utah, 1977 (unpublished); Rep.No. DOT-RC-82018, Utah State University, Logan Utah, 1981 (unpublished).

  13. E. Barone and A. Belleni-Morante, Trans. Theory Stat. Phys. 7(1&2):61 (1978).

    Google Scholar 

  14. R. Semenzato, Trans. Theory Stat. Phys. 9(1&2):83-93 (1981); 9(2&3):95–114 (1981).

    Google Scholar 

  15. E. Alberti and G. Belli, Trans. Res. 12:33 (1978).

    Google Scholar 

  16. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases(Cambridge University Press, Cambridge, 1952).

    Google Scholar 

  17. P. P. J. M. Schram, Kinetic Theory of Gases and Plasmas(Kluwer Academic Publishers, Dordrecht, 1991).

    Google Scholar 

  18. P. Resibois, J. Stat. Phys. 19(6):593 (1978).

    Google Scholar 

  19. P. Nelson, Trans. Theory Stat. Phys. 24:383 (1995).

    Google Scholar 

  20. R. Kühne, in Highway Capacity and Level of Service, U. Brannolte, ed. (Balkema, Rotterdam, 1991), p. 211, In Proc. 9th Inter. Symp. on Transportation and Traffic Theory, I. Volmuller and R. Hamerslag, eds. (VNU Sciences Press, Utrecht, The Netherlands, 1984).

    Google Scholar 

  21. H. Zackor, R. Kühne, and W. Balz, Untersuchungen des Verkehrsablaufs im Bereich der Leistungsfähigkeit und bei instabilem Fluss(Forschung Straßenbau und Straßverkehrstechnik, Bonn, 1988), p. 524.

    Google Scholar 

  22. R. Wegener and A. Klar, A kinetic model for vehicular traffic derived from a stochastic microscopic model, preprint; A. Klar and R. Wegener, J. Stat. Phys. 87:91 (1997).

    Google Scholar 

  23. D. Helbing, Physica A 233:253 (1996).

    Google Scholar 

  24. A. Mason and A. Woods, Phys. Rev. E 55:2203 (1997).

    Google Scholar 

  25. P. Wagner, K. Nagel, and D. Wolf, Physica A 234:687 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, C. Traffic Flow Models Considering an Internal Degree of Freedom. Journal of Statistical Physics 90, 1251–1275 (1998). https://doi.org/10.1023/A:1023231428403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023231428403

Navigation