Skip to main content
Log in

Transport Properties of Kicked and Quasiperiodic Hamiltonians

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study transport properties of Schrödinger operators depending on one or more parameters. Examples include the kicked rotor and operators with quasi-periodic potentials. We show that the mean growth exponent of the kinetic energy in the kicked rotor and of the mean square displacement in quasiperiodic potentials is generically equal to 2: this means that the motion remains ballistic, at least in a weak sense, even away from the resonances of the models. Stronger results are obtained for a class of tight-binding Hamiltonians with an electric field E(t) = E 0+ E 1cos ωt. For \(H = \sum {a_{n - k} (|n - k\rangle \langle n| + |n\rangle \langle n - k|) + E(t)|n\rangle \langle n|} \)with \(a_n\sim|n|^{-\nu}(\nu>3/2)\)we show that the mean square displacement satisfies \(\overline {\langle\psi_{t,}N^2\psi_1\rangle}\geqslant C_\varepsilon t^{2/(\nu+1/2)-\varepsilon} \)for suitable choices of ω, E 0, and E 1. We relate this behavior to the spectral properties of the Floquet operator of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Asch and A. Knauf, Ballistic motion in periodic potentials, mp arc 97-545.

  2. M. Berry, Incommensurability in an exactly soluble quantal and classical model for a kicked rotator, Physica D 10:369-378 (1984).

    Google Scholar 

  3. J. Bellissard, Stability and instability in quantum mechanics, in Trends and Developments in the 80's, S. Albeverio and Ph. Blanchard, eds. (Bielefeld, 1985).

  4. J. M. Barbaroux, J. M. Combes, and R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, to appear in Journ. Math. Anal. Appl. 213:698–722 (1997).

  5. J. M. Combes, Connection between quantum dynamics and spectral properties of time evolution operators in Differential Equations and Applications in Mathematical Physics, W. F. Ames, E. M. Harrell, and J. V. Herod, eds. (Academic Press, 1993), pp. 59-69.

  6. H. L. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger Operators, Springer Verlag (1987).

  7. G. Casati and I. Guarneri, Non-recurrent behaviour in quantum dynamics, Commun. Math. Phys. 95:121-127 (1984).

    Google Scholar 

  8. S. De Bièvre and G. Forni, On the growth of averaged Weyl sums for rigid rotations, Studia Mathematica, to appear.

  9. D. H. Dunlap and V. M. Kenkre, Dynamical localization for a charged particle moving under the influence of an electric field, Phys. Rev. B 346:3625-3633 (1986).

    Google Scholar 

  10. R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, What is localization?, Phys. Rev. Lett. 75(1):117-119 (1995).

    Google Scholar 

  11. G. Gallavotti, Elements of Classical Mechanics, Springer Texts and Monographs in Physics (1983).

  12. S. Fishman, D. Grempel, and R. Prange, Localization in an incommensurate potential: An exactly solvable model, Phys. Rev. Lett. 49:833-836 (1982).

    Google Scholar 

  13. I. Guarneri, On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21(7):729-733 (1993).

    Google Scholar 

  14. J. S. Howland, Quantum stability, in Schrödinger Operators, The Quantum Mechanical many Body Problem, E. Balslev, ed., Springer Lecture Notes in Physics, Vol. 403 (1992), pp. 100-122.

  15. F. M. Israilev and D. L. Shepelyanski, Quantum resonance for a rotator in a nonlinear periodic field, Theor. Math. Phys. 43:553-560 (1980).

    Google Scholar 

  16. A. Joye, Upper bounds for the energy expectation in time dependent quantum mechanics, J. Stat. Phys. 85:575-606 (1996).

    Google Scholar 

  17. A. Khinchin, Continued Fractions, The University of Chicago Press, Chicago and London (1964).

    Google Scholar 

  18. Y. Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal. 142:406-445 (1996).

    Google Scholar 

  19. G. Nenciu, Adiabatic theory: Stability of systems with increasing gaps, Ann. Inst. H. Poincaré 67(4):411-424 (1997).

    Google Scholar 

  20. C. R. De Oliveira, Spectral properties of a simple Hamiltonian model, Journ. Math. Phys. 34(9):3878-3886 (1993).

    Google Scholar 

  21. K. Petersen, On a series of cosecants related to a problem in ergodic theory, Compositio Mathematica 26(3):313-317 (1973).

    Google Scholar 

  22. M. Reed and B. Simon, A Course in Mathematical Physics, Vol. I, Academic Press (1978).

  23. M. Reed and B. Simon, A Course in Mathematical Physics, Vol. III, Academic Press (1987).

  24. L. Schwartz, Analyse, Hermann, Paris (1970).

    Google Scholar 

  25. B. Simon, Operators with singular continuous spectrum I: General operators, Ann. of Math. 141:131-145 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bièvre, S., Forni, G. Transport Properties of Kicked and Quasiperiodic Hamiltonians. Journal of Statistical Physics 90, 1201–1223 (1998). https://doi.org/10.1023/A:1023227327494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023227327494

Navigation