Skip to main content
Log in

Relative Entropy and Identification of Gibbs Measures in Dynamical Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this work we explore the idea of using the relative entropy of ergodic measures for the identification of Gibbs measures in dynamical systems. The question we face is how to estimate the thermodynamic potential (together with a grammar) from a sample produced by the corresponding Gibbs state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics 470, Springer-Verlag.

  2. E. Ugalde and R. Lima, On a discrete dynamical model for local turbulence, Physica D 95:144-157 (1996).

    Google Scholar 

  3. E. Ugalde, Self-similarity and finite-time intermittent effects in turbulent sequences, J. Phys. A. Math. Gen. 29:4425-4443 (1996).

    Google Scholar 

  4. D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications 5 (Addison-Wesley, 1978)

  5. P. Collet, A. Galves, and A. Lopes, Maximum likelihood and minimum entropy identification of grammars, Random and Computational Dynamics 3:241-250 (1995).

    Google Scholar 

  6. P. Billingsley, Statistical Inferences for Markov Chain (Univ. of Chicago Press, 1961).

  7. M. Katz, On some Criteria for Estimating the order of a Markov Chain, Technometrics 23:243 (1982).

    Google Scholar 

  8. Comets et al., Parameter estimation for Gibbs distributions from partially observed data. Ann. Appl. Prob. 2(1):142-170 (1992).

    Google Scholar 

  9. A. Raftery and S. Tavare, Estimation and modeling repeated patterns in high order Markov chains with the mixture transition distribution model, J. R. Stat. Soc., Ser. C 43(1):179-199 (1994).

    Google Scholar 

  10. D. S. Ornstein and B. Weiss, How sampling reveals a process, Annals of Probability 18:905-930 (1990).

    Google Scholar 

  11. L. Barreira, Y. Pesin, and J. Schmeling, On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents, Multifractal rigidity, Chaos 7:27-38 (1997).

    Google Scholar 

  12. J. T. Lewis, C.-E. Pfister, R. Russel, and W. G. Sullivan, Reconstruction sequences and equipartition pleasures: An examination of asymptotic equipartition property, to appear in IEEE Transactions on Information Theory.

  13. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics 527, Springer-Verlag.

  14. M. Smorodinsky, Ergodic Theory, Entropy, Lecture Notes in Mathematics 214, 1971.

  15. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187–188, SMF, 1990.

  16. S. Kullback, Information Theory and Statistics (Wiley, 1959).

  17. S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statist. 22:79-86, 1951.

    Google Scholar 

  18. P. Billingsley, Probability and Measure, Wiley Series in Probability and Mathematical Statistics, third edition, 1995.

  19. E. Ugalde, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazottes, JR., Floriani, E. & Lima, R. Relative Entropy and Identification of Gibbs Measures in Dynamical Systems. Journal of Statistical Physics 90, 697–725 (1998). https://doi.org/10.1023/A:1023220802597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023220802597

Navigation