Skip to main content
Log in

An Efficient Implementation of High-Order Coupled-Cluster Techniques Applied to Quantum Magnets

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We illustrate how the systematic inclusion of multi-spin correlations of the quantum spin–lattice systems can be efficiently implemented within the framework of the coupled-cluster method by examining the ground-state properties of both the square-lattice and the frustrated triangular-lattice quantum antiferromagnets. The ground-state energy and the sublattice magnetization are calculated for the square-lattice and triangular-lattice Heisenberg antiferromagnets, and our best estimates give values for the sublattice magnetization which are 62% and 51% of the classical results for the square and triangular lattices, respectively. We furthermore make a conjecture as to why previous series expansion calculations have not indicated Néel-like long-range order for the triangular-lattice Heisenberg antiferromagnet. We investigate the critical behavior of the anisotropic systems by obtaining approximate values for the positions of phase transition points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Coester, Nucl. Phys. 7:421 (1958); F. Coester and H. Kümmel, ibid. 17:477 (1960).

    Google Scholar 

  2. J. Čižek, J. Chem. Phys. 45:4256 (1966); Adv. Chem. Phys. 14:35 (1969).

    Google Scholar 

  3. R. F. Bishop and K. H. Lührmann, Phys. Rev. B 17:3757 (1978).

    Google Scholar 

  4. H. Kümmel, K. H. Lührmann, and J. G. Zabolitzky, Phys Rep. 36C:1 (1978).

    Google Scholar 

  5. J. S. Arponen, Ann. Phys. (N.Y.) 151:311 (1983).

    Google Scholar 

  6. R. F. Bishop and H. Kümmel, Phys. Today 40(3):52 (1987).

    Google Scholar 

  7. J. S. Arponen, R. F. Bishop, and E. Pajanne, Phys. Rev. A 36:2519 (1987); ibid. 36:2539 (1987); in Condensed Matter Theories, P. Vashishta, R. K. Kalia, and R. F. Bishop, eds. (Plenum, New York, 1987), Vol. 2, p. 357.

    Google Scholar 

  8. R. J. Bartlett, J. Phys. Chem. 93:1697 (1989).

    Google Scholar 

  9. R. F. Bishop, Theor. Chim. Acta 80:95 (1991).

    Google Scholar 

  10. F. D. M. Haldane, Phys. Lett. 93A:464 (1983); Phys. Rev. Lett. 50:1153 (1983).

    Google Scholar 

  11. S. R. White and D. A. Huse, Phys. Rev. B 48:3844 (1993).

    Google Scholar 

  12. V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59:2095 (1987); Phys. Rev. B 39:11879 (1989).

    Google Scholar 

  13. C. Zeng and V. Elser, Phys. Rev. B 42:8436 (1990).

    Google Scholar 

  14. J. T. Chalker and J. F. G. Eastmond, Phys. Rev. B 46:14201 (1992).

    Google Scholar 

  15. R. R. P. Singh and D. A. Huse, Phys. Rev. Lett. 68:1766 (1992).

    Google Scholar 

  16. S. Sachdev, Phys. Rev. B 45:12377 (1992).

    Google Scholar 

  17. K. Yang, L. K. Warman, and S. M. Girvin, Phys. Rev. Lett. 70:2641 (1993).

    Google Scholar 

  18. B. Bernu, C. Lhuillier, and L. Pierre, Phys. Rev. Lett. 69:2590 (1992).

    Google Scholar 

  19. N. Elstner and A. P. Young, Phys. Rev. B 50, 6871 (1994).

    Google Scholar 

  20. B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Phys. Scripta T49:192 (1993); Phys. Rev. B 50:10048 (1994).

    Google Scholar 

  21. R. Deutscher, H. V. Everts, S. Miyashita, and M. Wintel, J. Phys. A: Math. Gen. 23:L1043 (1990); R. Deutscher and H. V. Everts, Z. Phys. B: Condensed Matter 93:77 (1993).

    Google Scholar 

  22. M. Roger and J. H. Hetherington, Phys. Rev. B 41:200 (1990).

    Google Scholar 

  23. R. F. Bishop, J. B. Parkinson, and Y. Xian, Phys. Rev. B 43, 13782 (1991); Theor. Chim. Acta 80:181 (1991); Phys. Rev. B 44:9425 (1991); in Recent Progress in Many-Body Theories, T. L. Ainsworth, C. E. Campbell, B. E. Clements, and E. Krotscheck, eds. (Plenum, New York, 1992), Vol. 3, p. 117.

    Google Scholar 

  24. F. E. Harris, Phys. Rev. B 47:7903 (1993).

    Google Scholar 

  25. F. Cornu, Th. Jolicoeur, and J. C. Le Guillou, Phys. Rev. B 49:9548 (1994).

    Google Scholar 

  26. R. F. Bishop, R. G. Hale, and Y. Xian, Phys. Rev. Lett. 73:3157 (1994).

    Google Scholar 

  27. R. F. Bishop, R. G. Hale, and Y. Xian, Phys. Rev. B 46:880 (1992).

    Google Scholar 

  28. W. H. Wong, C. F. Lo, and Y. L. Wang, Phys. Rev. B 50:6126 (1994).

    Google Scholar 

  29. R. F. Bishop, J. B. Parkinson, and Y. Xian, J. Phys.: Condens. Matter 5:9169 (1993).

    Google Scholar 

  30. D. J. J. Farnell and J. B. Parkinson, J. Phys.: Condens. Matter 6:5521 (1994).

    Google Scholar 

  31. Y. Xian, J. Phys.: Condens Matter 6:5965 (1994).

    Google Scholar 

  32. R. Bursill, G. A. Gehring, D. J. J. Farnell, J. B. Parkinson, T. Xiang, and C. Zeng, J. Phys.: Condens. Matter 7:8605 (1995).

    Google Scholar 

  33. C. Zeng, I. Staples, and R. F. Bishop, J. Phys.: Condens. Matter 7:9021 (1995); Phys. Rev. B 53:9168 (1996).

    Google Scholar 

  34. C. Zeng and R. F. Bishop, in Coherent Approaches to Fluctuations, M. Suzuki and N. Kawashima, eds. (World Scientific, Singapore, 1996), p. 296.

    Google Scholar 

  35. C. F. Lo, K. K. Pang, and Y. L. Wang, J. Appl. Phys. 70:6080 (1991).

    Google Scholar 

  36. Y. Xian, in Condensed Matter Theories, M. Casas, M. de Llano, and A. Polls, eds. (Nova Science Publ., Commack, New York, 1995), Vol. 10, p. 541.

    Google Scholar 

  37. P. W. Anderson, Phys. Rev. 86:694 (1952); T. Oguchi, ibid. 117:117 (1960).

    Google Scholar 

  38. R. R. P. Singh, Phys. Rev. B 39:9760 (1989); W. Zheng, J. Oitmaa, and C. J. Hamer, ibid. 44:11869 (1991).

    Google Scholar 

  39. J. Carlson, Phys. Rev. B 40:846 (1989); N. Trivedi and D. M. Ceperley, ibid. 41:4552 (1990).

    Google Scholar 

  40. K. J. Runge, Phys. Rev. B 45:12292 (1992); ibid. 45:7229 (1992).

    Google Scholar 

  41. D. A. Huse and V. Elser, Phys. Rev. Lett. 60:2531 (1988).

    Google Scholar 

  42. D. J. J. Farnell, C. Zeng, J. B. Parkinson, and R. F. Bishop, unpublished.

  43. T. Barnes, D. Kotchan, and E. S. Swanson, Phys. Rev. B 39:4357 (1989).

    Google Scholar 

  44. K. Kubo and T. Kishi, Phys. Rev. Lett. 61:2585 (1988).

    Google Scholar 

  45. W. F. Lunnon, in Graph Theory and Computing, R. C. Read, ed. (Academic Press, New York, 1972), p. 87.

    Google Scholar 

  46. M. Boninsegni, Phys. Rev. B 52:5304 (1995).

    Google Scholar 

  47. P. W. Leung and K. Runge, Phys. Rev. B 47:5861 (1993).

    Google Scholar 

  48. R. F. Bishop, J. B. Parkinson, and Y. Xian, J. Phys.: Condens. Matter 4:5783 (1992).

    Google Scholar 

  49. C. Zeng, D. J. J. Farnell, and R. F. Bishop, unpublished.

  50. B. Flaming, Practical Data Structures in C + +, (Coriolis Group Book, Wiley, New York, 1993), p. 281.

    Google Scholar 

  51. M. Roger and J. H. Hetherington, Europhys. Lett. 11:255 (1990); C. F. Lo, E. Manousakis, and Y. L. Wang, Phys. Lett. A 156:42 (1991); F. Petit and M. Roger, Phys. Rev. B 49:3453 (1994); R. F. Bishop, Y. Xian, and C. Zeng, Int. J. Quantum Chem. 55:181 (1995).

    Google Scholar 

  52. S. Mertens, J. Stat. Phys. 58:1095 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, C., Farnell, D.J.J. & Bishop, R.F. An Efficient Implementation of High-Order Coupled-Cluster Techniques Applied to Quantum Magnets. Journal of Statistical Physics 90, 327–361 (1998). https://doi.org/10.1023/A:1023220222019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023220222019

Navigation