Skip to main content
Log in

A Hybrid Kinetic-Quantum Model for Stationary Electron Transport

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Interface conditions between a classical transport model described by the Boltzmann equation and a quantum model described by a set of Schrödinger equations are presented in the one-dimensional stationary setting. These interface conditions, derived thanks to an asymptotic analysis of the Wigner transform, are shown to be flux-preserving and are used to build a hybrid model consisting of a quantum zone surrounded by two classical ones. The hybrid model is shown to be well posed when the potential is either prescribed or computed self-consistently, and the semiclassical limit of the problem is shown to give the right interface conditions between two kinetic regions (the electrostatic potential being fixed). This model can be used to describe far-from-equilibrium electron transport in a resonant tunneling diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. N. Argyres, Quantum Kinetic equations for electrons in high electric and phonon fields, Phys. Lett. A. 171:373-379 (1992).

    Google Scholar 

  2. A. M. Anile and O. Muscato, Extended thermodynamics tested beyond the linear regime: The case of electron transport in silicon semiconductors, Contin. Mech. Thermodyn. 8(3):131-142 (1996).

    Google Scholar 

  3. A. Arnold, Numerically Absorbing Boundary Conditions for Quantum Evolution Equations, to appear 1996.

  4. N. Ben Abdallah, On a multi-dimensional Schrödinger Poisson Scattering model for semiconductors, submitted.

  5. N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, Journal of Mathematical Physics 37(7):3306-3333 (1996).

    Google Scholar 

  6. N. Ben Abdallah, P. Degond, and S. Genieys, An Energy-transport model derived from the Boltzmann equation of semiconductors, J. Stat. Phys. 84:1-2, 205–231 (1996).

    Google Scholar 

  7. N. Ben Abdallah, P. Degond and P. A. Markowich, On a one-dimensional Schrödinger Poisson Scattering model, ZAMP 48:135-155 (1997).

    Google Scholar 

  8. N. Ben Abdallah, P. Degond, and P. A. Markowich, The Quantum Child Langmuir Problem, Nonlinear Analysis TMA 31(5–6):629-648 (1998).

    Google Scholar 

  9. F. Brezzi and P. A. Markowich, A mathematical analysis of quantum transport in three dimensional crystals, Anna. di Matematica Pura Applicata 160:171-191 (1991).

    Google Scholar 

  10. R. Brunetti, C. Jacoboni and F. Rossi, Quantum Theory of Transient Transport in Semiconductors: A Monte Carlo Approach, Phys. Rev. B 39(15):10781-10790 (1989).

    Google Scholar 

  11. F. Chevoir, Effet tunnel résonant assisté par diffusion dans les diodes double-barrière, PHD thesis, (Univ. Orsay 1992).

  12. F. Chevoir and B. Vinter, Scattering-assisted tunneling in double-barrier diodes: scattering rates and valley current, Phys. Rev B. 47(12):7260-7274 (1993).

    Google Scholar 

  13. P. Degond and P. A. Markowich, A quantum transport model for semiconductors: The Wigner-Poisson model on a bounded Brillouin zone, M2AN 24:697-710 (1990).

    Google Scholar 

  14. P. Degond and C. Schmeiser, Kinetic boundary layers and fluid-kinetic coupling in semiconductors, in preparation.

  15. P. Degond and C. Schmeiser, Macroscopic models for semiconductor heterostructures, in preparation.

  16. L. Di Menza, Transparent and Absorbing Boundary Conditions for the Schrödinger Equation in a Bounded Domain, Internal report, (Univ. Bordeaux 1, 1995).

  17. W. R. Frensley, Boundary conditions for open quantum systems driven far from equilibrium, Reviews of Modern Physics 62(3):745-791 (1990).

    Google Scholar 

  18. W. R. Frensley, Wigner-function model of a resonant-tunneling semiconductor device, Phys. Rev. B. 36(3):1570-1580 (1987).

    Google Scholar 

  19. P. Gérard, Mesures semiclassiques et ondes de bloch, Sém. Ecole Polytechnique XVI:1-19 (1990–1991).

    Google Scholar 

  20. P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud, Homogenization Limits and Wigner Transforms, submitted, 1996.

  21. C. Greengard and P. A. Raviart, A boundary value problem for the stationary Vlasov-Poisson equations: The plane diode, Comm. Pure Appl. Math. 43:473-507 (1990).

    Google Scholar 

  22. J. R. Hellums and W. R. Frensley, Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation, Phys. Rev. B. 49:2904-2906 (1994).

    Google Scholar 

  23. A. Klar, Asymptotic induced domain decomposition methods for kinetid and drift-diffusion semiconductor equation, preprint Univ. Kaiserslautern.

  24. N. C. Kluksdahl, A. M. Kriman, D.K. Ferry, and C. Ringhofer, Self-consistent study of the resonant tunneling diode, Phys. Rev. B. 39(11):7720-7735 (1989).

    Google Scholar 

  25. C. Lent and D. Kirkner, The Quantum Transmitting Boundary Method, J. Appl. Phys. 67(10):6353-6359 (1990).

    Google Scholar 

  26. P. L. Lions and T. Paul, Sur les mesures de Wigner, Revista Mathematica Iberoamericana 9:553-618 (1993).

    Google Scholar 

  27. P. A. Markowich and N. J. Mauser, The classical limit of a selfconsistent quantum-Vlasov equation in 3-D, Math. Meth. Mod. 16(6):409-442 (1993).

    Google Scholar 

  28. P. A. Markowich, N. J. Mauser and F. Poupaud, A Wigner function approach to semiclassical limits: electrons in a periodic potential, J. Math. Phys. 35:1066-1094 (1994).

    Google Scholar 

  29. A. Messiah, Mécanique Quantique, Tome 1, 2, (Dunod, Paris, 1995).

    Google Scholar 

  30. P. Mounaix, O. Vanbésien and D. Lippens, Effect of cathode space layer on the current-voltage characteristics of resonant tunneling diodes, Appl. Phys. Lett. 57:8, 1517–1519 (1990).

    Google Scholar 

  31. F. Nier, A stationary Schrödinger-Poisson system arising from the modeling of electronic devices, 2(5):489-510 (1990).

    Google Scholar 

  32. F. Nier, A variational formulation of Schrödinger-Poisson systems in dimension d ⩽ 3, Comm. Part. Diff. Equations 18(7–8):1125-1147 (1993).

    Google Scholar 

  33. A. Nouri and F. Poupaud, Stationary solutions of boundary value problems for Maxwell Boltzmann system modeling degenerate semiconductors, SIAM J. Math. Anal. 26(5):1143-1156 (1995).

    Google Scholar 

  34. O. Vanbésien and D. Lippens, Theoretical analysis of a branch line quantum directional coupler, Appl. Phys. Lett. 65(19):2439-2441 (1994).

    Google Scholar 

  35. F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system, Forum Mathematicum 4:499-527 (1992).

    Google Scholar 

  36. F. Poupaud, Diffusion approximation of the linear semiconductor equation: analysis of boundary layers, Asymp. Anal. 4:293-317 (1991).

    Google Scholar 

  37. F. Poupaud and C. Ringhofer, Quantum hydrodynamic models in a crystal, Appl. Math. Lett. 8(6):55-59 (1995).

    Google Scholar 

  38. C. Ringhofer, D. K. Ferry, and N. C. Kluksdahl, Absorbing boundary conditions for the simulation of quantum transport phenomena, Trans. Theo. Stat. Phys. 18:331-346 (1989).

    Google Scholar 

  39. C. Schmeiser and A. Zwirchmayr, Elastic and drift-diffusion limits of electron phonon interaction in semiconductors, M3AS to appear.

  40. R. Stratton, Diffusion of hot and cold electrons in semiconductor barriers, Phys. Rev. 126:2002-2014 (1962).

    Google Scholar 

  41. D. Ventura, A. Gnudi, G. Baccarani, and F. Odeh, Multidimensional spherical harmonics expansion of Boltzmann equation for transport in semiconductors, Appl. Math. Lett. 5:85-90 (1992).

    Google Scholar 

  42. E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40:749-759 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, N.B. A Hybrid Kinetic-Quantum Model for Stationary Electron Transport. Journal of Statistical Physics 90, 627–662 (1998). https://doi.org/10.1023/A:1023216701688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023216701688

Navigation