Skip to main content
Log in

Amplitude Equation for Lattice Maps, A Renormalization Group Approach

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the development of instabilities of homogeneous stationary solutions of discrete-time lattice maps. Under some generic hypotheses we derive an amplitude equation which is the space-time-continuous Ginzburg–Landau equation. Using dynamical renormalization group methods, we control the accuracy of this approximation in a large ball of its basin of attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bricmont and A. Kupiainen, Renormalizing partial differential equations, in XIth International Congress on Mathematical Physics, D. Iagolnitzer, ed. (International Press Incorporated, Boston, 1995).

    Google Scholar 

  2. P. Collet, Thermodynamic limit of the Ginzburg-Landau equation, Nonlinearity 7:1175-1190 (1994).

    Google Scholar 

  3. P. Collet and J.-P. Eckmann, The time-dependent amplitude equation for the Swift-Hohenberg problem, Commun. Math. Phys. 132:139-153 (1990).

    Google Scholar 

  4. L.-Y. Chen, N. Goldenfeld, and Y. Oono, Renormalization group theory for global asymptotic analysis, Phys. Rev. Lett. 73:1311-1315 (1994).

    Google Scholar 

  5. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65:851-1113 (1993).

    Google Scholar 

  6. W. Eckhaus, The Ginzburg-Landau manifold is an attractor, J. Nonlinear Sci. 3:329-348 (1993).

    Google Scholar 

  7. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group(Addison-Wesley, Reading, 1992). See also N. Goldenfeld et al., Anomalous dimensions and the renormalization group in a nonlinear diffusion process, Phys. Rev. Lett. 64:1361–1364 (1990).

    Google Scholar 

  8. G. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields(Springer Verlag, Berlin/Heidelberg/New York, 1983).

    Google Scholar 

  9. L. Hormander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis(Springer Verlag, Berlin/Heidelberg/New York, 1990).

    Google Scholar 

  10. Y. Il'yashenko and S. Yakovenko, Smooth normal forms of local families of diffeomorphisms and vector fields, Russian Math. Survey 46:1-43 (1991).

    Google Scholar 

  11. P. Kirmann, G. Schneider, and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Ed. A 122:85-91 (1992).

    Google Scholar 

  12. J. Lega, A. Newll, and T. Passot, Order parameter equations for patterns, Ann. Rev. Fluid. Mech. 25:399-453 (1993).

    Google Scholar 

  13. G. Schneider, Global existence via Ginzburg-Landau formalism and pseudo orbits of Ginzburg-Landau approximations, Comm. Math. Phys. 164:159-179 (1994).

    Google Scholar 

  14. G. Schneider, Analyticity of Ginzburg-Landau modes, J. Diff. Equ. 121:233-257 (1995).

    Google Scholar 

  15. A. Van Harten, On the validity of Ginzburg-Landau's equation, J. Nonlin. Sci. 1:397-422 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collet, P. Amplitude Equation for Lattice Maps, A Renormalization Group Approach. Journal of Statistical Physics 90, 1075–1105 (1998). https://doi.org/10.1023/A:1023212925677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023212925677

Navigation