Skip to main content
Log in

A High-Order Accurate Algorithm for Electrostatics of Overlapping Disks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A fast and accurate algorithm for the computation of effective electric and mathematically equivalent properties of composites with nonsmooth interfaces is reported. The algorithm is based on an integral equation reformulation of the electrostatic partial differential equation and a fast hierarchical technique for potential field evaluation. In a numerical example, 200 large and strongly inhomogeneous aggregates of randomly overlapping disks are solved with a relative error of 0.0005.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. I. Halperin, S. Feng, and P. N. Sen, Differences between lattice and continuum percolation transport exponents, Phys. Rev. Lett. 54:2391 (1985).

    Google Scholar 

  2. J. P. Clerc, G. Giraud, J. M. Laugier, and J. M. Luck, The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models, Advances in Physics 39:191 (1990).

    Google Scholar 

  3. L. M. Schwartz, J. R. Banavar, and B. I. Halperin, Biased-diffusion calculations of electrical transport in inhomogeneous continuum systems, Phys. Rev. B 40:9155 (1989).

    Google Scholar 

  4. J. Tobochnik, D. Laing, and G. Wilson, Random-walk calculation of conductivity in continuum percolation, Phys. Rev. A 41:3052 (1990).

    Google Scholar 

  5. M. M. Tomadakis and S. V. Sotirchos, Transport through random arrays of conductive cylinders dispersed in a conductive matrix, J. Chem. Phys. 104:6893 (1996).

    Google Scholar 

  6. E. J. Garboczi, M. F. Thorpe, M. S. DeVries, and A. R. Day, Universal conductivity curve for a plane containing random holes, Phys. Rev. A 43:6473 (1991).

    Google Scholar 

  7. T. Elam, A. R. Kerstein, and J. J. Rehr, Critical properties of the void percolation problem for spheres, Phys. Rev. Lett. 52:1516 (1984).

    Google Scholar 

  8. B. Berkowitz and R. Knight, Continuum percolation conductivity exponents in restricted domains, J. Stat. Phys. 80:1415 (1995).

    Google Scholar 

  9. G. W. Milton, Bounds on the electromagnetic, elastic, and other properties of two-component composites, Phys. Rev. Lett. 46:542 (1981).

    Google Scholar 

  10. G. W. Milton, Bounds on the elastic and transport properties of two-component composites, J. Mech. Phys. Solids 30:177 (1982).

    Article  Google Scholar 

  11. S. Torquato and J. D. Beasley, Bounds on the effective thermal conductivity of dispersions of fully penetrable cylinders, Int. J. Engng. Sci. 24:415 (1986).

    Google Scholar 

  12. C. J. Lobb and M. G. Forrester, Measurement of nonuniversal critical behavior in a two-dimensional continuum percolating system, Phys. Rev. B 35:1899 (1990).

    Google Scholar 

  13. K. H. Han, Z. S. Lim, and S. I. Lee, Experimental study of the conductivity exponent in a two-dimensional Swiss cheese percolating network, Physica B 167:185 (1990).

    Google Scholar 

  14. V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60:187-207 (1985).

    Google Scholar 

  15. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73:325 (1987).

    Google Scholar 

  16. J. Carrier, L. Greengard and V. Rokhlin, A fast adaptive multipole algorithm for particle simulations, SIAM J. Sci. and Stat. Comput. 9:669-686 (1988).

    Google Scholar 

  17. J. Helsing, Thin bridges in isotropic electrostatics, J. Comp. Phys. 127:142 (1996).

    Google Scholar 

  18. L. Greengard and M. Moura, On the numerical evaluation of electrostatic fields in composite materials, Acta Numerica 1994(Cambridge University Press, Cambridge, 1994), pp. 379-410.

    Google Scholar 

  19. H. Cheng and L. Greengard, On the numerical evaluation of electrostatic fields in dense random dispersion of cylinders, J. Comput. Phys. 136:629 (1997).

    Google Scholar 

  20. Y. Saad and M. H. Schultz, GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7:856-869 (1986).

    Google Scholar 

  21. Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials, J. Appl. Phys. 33:3125 (1962).

    Google Scholar 

  22. D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, Ann. Physik 24:636 (1935).

    Google Scholar 

  23. L. Greengard and V. Rokhlin, A new version of the Fast Multipole Method for the Laplace equation in three dimensions, Acta Numerica 1997(Cambridge University Press, Cambridge, 1997), pp. 229-269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helsing, J. A High-Order Accurate Algorithm for Electrostatics of Overlapping Disks. Journal of Statistical Physics 90, 1461–1473 (1998). https://doi.org/10.1023/A:1023204117016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023204117016

Navigation