Skip to main content
Log in

Adsorption of Ideal Polymers on an Infinitely Ramified Fractal

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study ideal polymer chains interacting attractively with the borders of the lacunas of an infinitely ramified fractal, the Sierpinski carpet. Ideal chains are simulated on finite stages of construction of this fractal at various temperatures. The mean-square displacement and the mean number of adsorbed monomers of N-step chains are estimated in these lattices, and extrapolations to the fractal limit (infinite lattice) consider the exact forms of finite-size corrections as previously predicted by the series expansion method. In the noninteracting case, a finite fraction of the monomers is adsorbed, and this fraction increases as the temperature decreases. However, there is evidence that the critical exponent v which governs the growth of the chains varies with the temperature in a nonmonotonic way. At high temperatures v increases with decreasing temperature, and thus the chains are more stretched than in the noninteracting case. At an intermediate temperature, v starts to decrease and is still positive at very low temperatures, when the chains grow along the borders of several lacunas, occasionally crossing the bulk between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  2. K. Binder and K. Kremer, in Scaling Phenomena in Disordered Systems, R. Pynn and A. Skjeltrop, eds. (Plenum, New York, 1985).

    Google Scholar 

  3. R. Rammal, G. Toulouse, and J. Vannimenus, J. Physique 45:389 (1984).

    Google Scholar 

  4. S. Havlin and B. Avraham, Adv. Phys. 36, 695 (1987).

    Google Scholar 

  5. F. D. A. Aarão Reis and R. Riera, J. Stat. Phys. 71:453 (1993).

    Google Scholar 

  6. P. Pfeifer, in Fractals in Physics, L. Pietronero and E. Tosatti, eds. (Elsevier Science Publishers, 1986).

  7. M. Knezevic and D. Knezevic, Phys. Rev. E 53:2130 (1996).

    Google Scholar 

  8. V. Bubanja, M. Knezevic, and J. Vannimenus, J. Stat. Phys. 71:1 (1993).

    Google Scholar 

  9. S. Elezovic-Hadzic, M. Knezevic, S. Milosevic, and I. Zivic, J. Stat. Phys. 83:1241 (1996).

    Google Scholar 

  10. S. Milosevic, I. Zivic, and V. Miljkovic, Phys. Rev. E 55:5671 (1997).

    Google Scholar 

  11. J. Lal, S. K. Sinha, and L. Auvray, J. Phys. II France 7:1597 (1997).

    Google Scholar 

  12. A. Giacometti, A. Maritan, and H. Nakanishi, J. Stat. Phys. 75:669 (1994).

    Google Scholar 

  13. F. D. A. Aarão Reis and R. Riera, Physica A 208:322 (1994).

    Google Scholar 

  14. F. D. A. Aarão Reis and R. Riera, Phys. Rev. E 49:2579 (1994).

    Google Scholar 

  15. F. D. A. Aarão Reis, J. Phys. A 28:6277 (1995).

    Google Scholar 

  16. J. Batoulis and K. Kremer, J. Phys. A 21:127 (1988).

    Google Scholar 

  17. G. A. Baker, Essentials of Padé Approximants (Academic Press, New York, 1975).

    Google Scholar 

  18. A. J. Guttmann, J. Phys. A 20:1839 (1987).

    Google Scholar 

  19. A. Giacometti and A. Maritan, J. Phys. A 25:2753 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarão Reis, F.D.A. Adsorption of Ideal Polymers on an Infinitely Ramified Fractal. Journal of Statistical Physics 92, 659–674 (1998). https://doi.org/10.1023/A:1023096806805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023096806805

Navigation