Skip to main content
Log in

Predictive Turbulence Modeling by Variational Closure

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that a variational implementation of probability density function (PDF) closures has the potential to make predictions of general turbulence mean statistics for which a priori knowledge of the incorrectness is possible. This possibility exists because of realizability conditions on “effective potential” functions for general turbulence statistics. These potentials measure the cost for fluctuations to occur away from the ensemble-mean value in empirical time-averages of the given variable, and their existence is a consequence of a refined ergodic hypothesis for the governing dynamical system (Navier–Stokes dynamics). Approximations of the effective potentials can be calculated within PDF closures by an efficient Rayleigh–Ritz algorithm. The failure of realizability within a closure for the approximate potential of any chosen statistic implies a priori that the closure prediction for that statistic is not converged. The systematic use of these novel realizability conditions within PDF closures is shown in a simple 3-mode system of Lorenz to result in a statistically improved predictive ability. In certain cases the variational method allows an a priori optimum choice of free parameters in the closure to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Boussinesq, “Essai sur la théorie des eaux courantes,” Mém. prés. par div. savantes à l'Acad. Sci. (Paris) 23:1 (1877).

    Google Scholar 

  2. O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Phil. Trans. Roy. Soc. Lond. 186:123 (1894).

    Google Scholar 

  3. C. G. Speziale, “Analytical methods for the development of Reynolds-stress closures in turbulence,” Ann. Rev. Fluid Mech. 23:107 (1991).

    Google Scholar 

  4. R. H. Kraichnan, “A theory of turbulence dynamics,” in: Second Symposium on Naval Hydrodynamics, 29–44 (Office of Naval Research, Washington, D.C., 1958), Ref. ACR-38.

    Google Scholar 

  5. R. H. Kraichnan, “Dynamics of nonlinear stochastic systems,” J. Math. Phys. 2:124 (1961).

    Google Scholar 

  6. R. H. Kraichnan, “Realizability inequalities and closed moment equations,” Ann. N. Y. Acad. Sci. 357:37 (1980).

    Google Scholar 

  7. U. Schumann, “Realizability of Reynolds-stress turbulence models,” Phys. Fluids 20:721 (1977).

    Google Scholar 

  8. J. L. Lumley, “Computational modeling of turbulent flows,” Adv. Appl. Mech. 18:123 (1978).

    Google Scholar 

  9. L. Onsager, “Reciprocal relations in irreversible processes,” (I) Phys. Rev. 37:405 (1931); (II) 38:2265 (1931).

    Google Scholar 

  10. G. L. Eyink, “Turbulence noise,” J. Stat. Phys. 83:955 (1996).

    Google Scholar 

  11. G. L. Eyink, “Action principle in nonequilibrium statistical dynamics,” Phys. Rev. E 54:3419 (1996).

    Google Scholar 

  12. H. Chen, S. Chen, and R. H. Kraichnan, “Probability distribution of a stochastically advected scalar field,” Phys. Rev. Lett. 65:575 (1990).

    Google Scholar 

  13. T. Gotoh and R. H. Kraichnan, “Statistics of decaying Burgers turbulence,” Phys. Fluids A 5:445 (1992).

    Google Scholar 

  14. D. C. Haworth and S. B. Pope, “A generalized Langevin model for turbulent flows,” Phys. Fluids 29:387 (1986).

    Google Scholar 

  15. S. B. Pope, “Lagrangian PDF methods for turbulent flows,” Ann. Rev. Fluid Mech. 26:23 (1994).

    Google Scholar 

  16. R. O. Fox, “The Fokker-Planck closure for turbulent molecular mixing: passive scalars,” Phys. Fluids A 4:1230 (1992).

    Google Scholar 

  17. F. J. Alexander and G. L. Eyink, “Rayleigh-Ritz calculation of effective potential far from equilibrium,” Phys. Rev. Lett. 78:1 (1997).

    Google Scholar 

  18. F. J. Alexander and G. L. Eyink, “Turbulence fluctuations and new universal realizability conditions in modeling,” Phys. Rev. Lett. 78:2563 (1997).

    Google Scholar 

  19. E. Lorenz, “Maximum simplification of the dynamic equations,” Tellus 12:243 (1960).

    Google Scholar 

  20. R. H. Kraichnan, “Direct-interaction approximation for a system of several interacting simple shear waves,” Phys. Fluids 6:1603 (1963).

    Google Scholar 

  21. R. H. Kraichnan, “Invariance principles and approximations in turbulence dynamics,” in Dynamics of Fluids and Plasmas, S. I. Pai, ed. (Academic Press, New York, 1966), pp. 239–255.

    Google Scholar 

  22. S. A. Orszag and L. R. Bissonnette, “Dynamical properties of truncated Wiener-Hermite expansions,” Phys. Fluids 10:2603 (1967).

    Google Scholar 

  23. A. Juneja, D. P. Lathrop, K. R. Sreenivasan, and G. Stolovitsky, “Synthetic turbulence,” Phys. Rev. E 49:5179 (1994).

    Google Scholar 

  24. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. I (The MIT Press, Cambridge, MA, 1971).

    Google Scholar 

  25. U. Frisch, Turbulence (Cambridge U. Pr., Cambridge, 1995).

    Google Scholar 

  26. S. R. S. Varadhan, Large Deviations and Applications (SIAM, Philadelphia, 1984).

    Google Scholar 

  27. Y. Takahashi, “Entropy functional (free energy) for dynamical systems and their random perturbations,” Proc. Taniguchi Symp. on Stochastic Analysis (Kinokuniya-North-Holland, Tokyo, 1984).

    Google Scholar 

  28. Y. Kifer, “Large deviations in dynamical systems and stochastic processes,” Trans. Am. Math. Soc. 321:505 (1990).

    Google Scholar 

  29. B. Mandelbrot, “Random multifractals: negative dimensions and the resulting limitations of the thermodynamic formalism,” Proc. Roy. Soc. Lond. A 434:79 (1991).

    Google Scholar 

  30. B. A. Finlayson, The Method of Weighted Residuals and Variational Principles (Academic Press, New York, 1972).

    Google Scholar 

  31. F. J. Alexander and G. L. Eyink, “Numerical computation of nonequilibrium effective potential and effective action by constrained Rayleigh-Ritz,” unpublished.

  32. P. M. Stevenson, “Optimized perturbation theory,” Phys. Rev. D 23:2916 (1981).

    Google Scholar 

  33. S. F. Edwards, “The statistical dynamics of homogeneous turbulence,” J. Fluid. Mech. 18:239 (1964).

    Google Scholar 

  34. H. Grad, “On the kinetic theory of rarefied gases,” Comm. Pure and Appl. Math. 2:331 (1949).

    Google Scholar 

  35. G. L. Eyink, “Hermite-expansion PDF models and second-order closures for homogeneous turbulence,” unpublished (1996).

  36. M. Abramowitz and L. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964).

    Google Scholar 

  37. Y. Saad, Numerical Methods for Large Eigenvalue Problems (Halsted Press, New York, 1992).

    Google Scholar 

  38. R. B. Lehoucq, D. C. Sorenson, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. Available at the web-address ftp://ftp.caam.rice.edu/pub/people/sorenson/ARPACK/

  39. B. Bayly, “Parametric probability distribution function closures,” preprint (1992).

  40. I. Proudman and W. H. Reid, “On the decay of a normally distributed and homogeneous turbulent velocity field,” Phil. Trans. Roy. Soc. A 247:163 (1954).

    Google Scholar 

  41. Y. Ogura, “Energy transfer in an isotropic turbulent flow,” J. Geophys. Res. 67:3143 (1962).

    Google Scholar 

  42. Y. Ogura, “A consequence of the zero-fourth-order-cumulant approximation in the decay of isotropic turbulence,” J. Fluid Mech. 16:38 (1963).

    Google Scholar 

  43. G. Sochos, “Theoretical and numerical studies of some problems in reaction-diffusion equations, electromagnetic and statistical modeling of turbulent flows,” Ph.D. Thesis (Program in Applied Mathematics, University of Arizona, 1994).

  44. G. L. Eyink, “Fluctuations in the irreversible decay of turbulent energy.” Phys. Rev. E 56:5413 (1997).

    Google Scholar 

  45. G. L. Eyink, “A statistical Rayleigh-Ritz study of passive scalar decay: analytical results,” unpublished.

  46. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon Press, Oxford, 1960).

    Google Scholar 

  47. R. Graham and H. Haken, “Generalized thermodynamic potential for markoff systems in detailed balance and far from thermal equilibrium,” Z. Phys. 243:289 (1971).

    Google Scholar 

  48. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (Academic, New York, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyink, G.L., Alexander, F.J. Predictive Turbulence Modeling by Variational Closure. Journal of Statistical Physics 91, 221–283 (1998). https://doi.org/10.1023/A:1023096206013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023096206013

Navigation