Skip to main content
Log in

Cluster Structure of Collapsing Polymers

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In order to better understand the geometry of the polymer collapse transition, we study the distribution of geometric clusters made up of the nearest neighbor interactions of an interacting self-avoiding walk. We argue for this new correlated percolation problem that in two dimensions, and possibly also in three dimensions, a percolation transition takes place at a temperature lower than the collapse transition. Hence this novel transition should be governed by exponents unrelated to the θ-point exponents. This also implies that there is a temperature range in which the polymer has collapsed, but has no long-range cluster structure. We use Monte Carlo to study the distribution of clusters on the simple cubic and Manhattan lattices. On the Manhattan lattice, where the data are most convincing, we find that the percolation transition occurs at ω p =1.461(3), while the collapse transition is known to occur exactly at ω θ =1.414.... We propose a finite-size scaling form for the cluster distribution and estimate several of the critical exponents. Regardless of the value of ω p , this percolation problem sheds new light on polymer collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).

    Google Scholar 

  2. P.-G. de Gennes, J. Physique Lett. 36:L55 (1975).

    Google Scholar 

  3. J. des Cloizeaux and G. Jannink, Polymers in Solution (Clarendon Press, Oxford, 1990).

    Google Scholar 

  4. P.-G. de Gennes, Phys. Lett. 38A:339 (1972).

    Google Scholar 

  5. P.-G. de Gennes, J. Physique Lett. 39:L299 (1978).

    Google Scholar 

  6. A. Coniglio, C. N. Nappi, F. Peruggi, and L. Russo, J. Phys. A. 10:205 (1977).

    Google Scholar 

  7. Y. Zhou, C. K. Hall, and M. Karpluts, Phys. Rev. Lett. 77:2822 (1996).

    Google Scholar 

  8. R. M. Bradley, Phys. Rev. A 39:3738 (1989).

    Google Scholar 

  9. R. M. Bradley, Phys. Rev. A 41:914 (1990).

    Google Scholar 

  10. T. Prellberg and A. L. Owczarek, J. Phys. A. 27:1811 (1994).

    Google Scholar 

  11. P. P. Nidras and R. Brak, J. Phys. A. 30:1457 (1997).

    Google Scholar 

  12. D. Stauffer and A. Aharony, An Introduction to Percolation Theory (Taylor and Francis, London, 2nd ed., 1992).

    Google Scholar 

  13. R. Brak and A. L. Owczarek, J. Phys. A. 28:4709 (1995).

    Google Scholar 

  14. J. Hoshen and R. Kopelman, Phys. Rev. B. 14:3438 (1976).

    Google Scholar 

  15. I. Majid, N. Jan, A. Coniglio, and H. E. Stanley, Phys. Rev. Lett. 52:1257 (1984).

    Google Scholar 

  16. J. Lyklema and K. Kremer, J. Phys. A. 17:L691 (1984).

    Google Scholar 

  17. K. Kremer and J. Lyklema, J. Phys. A. 18:1515 (1985).

    Google Scholar 

  18. M. C. Tesi, E. J. J. Van Rensburg, E. Orlandini, and S. G. Whittington, J. Stat. Phys. 82:155 (1996).

    Google Scholar 

  19. N. Madras and A. D. Sokal, J. Stat. Phys. 50:109 (1988).

    Google Scholar 

  20. P. Grassberger and R. Hegger, J. Chem. Phys. 102:6881 (1995).

    Google Scholar 

  21. M. C. Tesi, E. J. J. van Rensburg, E. Orlandini, and S. G. Whittington, J. Phys. A. 29:2451 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brak, R., Nidras, P.P. & Owczarek, A.L. Cluster Structure of Collapsing Polymers. Journal of Statistical Physics 91, 75–93 (1998). https://doi.org/10.1023/A:1023083903287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023083903287

Navigation