Skip to main content
Log in

Convergence to Equilibrium of Random Ising Models in the Griffiths Phase

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Glauber-type dynamics for disordered Ising spin systems with nearest neighbor pair interactions in the Griffiths phase. We prove that in a nontrivial portion of the Griffiths phase the system has exponentially decaying correlations of distant functions with probability exponentially close to 1. This condition has, in turn, been shown elsewhere to imply that the convergence to equilibrium is faster than any stretched exponential, and that the average over the disorder of the time-autocorrelation function goes to equilibrium faster than exp[−k(log t)d/(d−1)]. We then show that for the diluted Ising model these upper bounds are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M, Aizenman and D. J. Barsky, Sharpness of the phase transition in percolation models, Commun. Math. Phys. 108:489–256 (1987).

    Google Scholar 

  2. M. Aizenman, D. J. Barsky, and R. Fernandez, The phase transition in a general class of Ising-type models is sharp, J. Stat. Phys. 47(3/4):343 (1987).

    Google Scholar 

  3. K. S. Alexander and L. Chayes, Non-perturbative criteria for Gibbsian uniqueness, Commun. Math. Phys. 189:447–464 (1997).

    Google Scholar 

  4. M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, The phase boundary in dilute and random Ising and Potts ferromagnets, J. Phys. A. Math. Gen. 20:L313 (1987).

    Google Scholar 

  5. J. Chayes, L. Chayes, and R. H. Schonmann, Exponential decay of connectivity in the two-dimensional Ising model, J. Stat. Phys. 49:433 (1987).

    Google Scholar 

  6. F. Cesi, G. Guadagni, F. Martinelli, and R. H. Schonmann, On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point, J. Stat. Phys. 85(1/2):55–102 (1996).

    Google Scholar 

  7. F. Cesi, C. Maes, and F. Martinelli, Relaxation of disordered magnets in the Griffiths regime, Commun. Math. Phys. 188:135–173 (1997).

    Google Scholar 

  8. F. Cesi, C. Maes, and F. Martinelli, Relaxation to equilibrium for two dimensional disordered Ising systems in the Griffiths phase, Commun. Math. Phys. 189:323–335 (1997).

    Google Scholar 

  9. R. Dobrushin, R. Kotecký, and S. Shlosman, Wulff construction. A global shape from local interaction, Translation of Mathematical Monographs, Vol. 104, AMS, 1992.

  10. C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models, Physica 57:536–564 (1972).

    Google Scholar 

  11. R. Griffiths, Non-analytic behaviour above the critical point in a random Ising ferromagnet, Phys. Rev. Lett. 23:17 (1969).

    Google Scholar 

  12. G. R. Grimmett and J. M. Marstrand, The supercritical phase of percolation is well behaved, Proc. Royal Soc. (London), Ser. A 430:439–457 (1990).

    Google Scholar 

  13. Y. Higuchi, Coexistence of infinite (*)-clusters II: Ising percolation in two dimension, Probab. Theory Rel. Fields 97:1 (1993).

    Google Scholar 

  14. D. Ioffe, Large deviation for the 2D Ising model: a lower bound without cluster expansion, J. Stat. Phys. 74(1/2):411 (1994).

    Google Scholar 

  15. D. Ioffe, Exact large deviation bounds up to T c for the Ising model in two dimension, Probab. Theory Related Fields 102:313–330 (1995).

    Google Scholar 

  16. D. Ioffe and R. H. Schonmann, Dobrushin-Kotecky-Shlosman theorem up to the critical temperature. Preprint (1997).

  17. M. V. Menshikov, S. A. Molchanov, and S. A. Sidovenko, Percolation theory and some applications, Itogi Nauki i Techniki (Series of Probability Theory, Mathematical Statistics and Theoretical Cybernetics) 24:53–110 (1986).

    Google Scholar 

  18. F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I: The attractive case, Commun. Math. Phys. 161 (1994).

  19. E. Olivieri, F. Perez, and S. Goulart-Rosa, Jr., Some rigorous results on the phase diagram of the dilute Ising model, Phys. Lett. 94A(6/7):309 (1983).

    Google Scholar 

  20. A. Pisztora, Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Rel. Fields 104:427 (1996).

    Google Scholar 

  21. C. E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helvetica Physica Acta 64:953 (1991).

    Google Scholar 

  22. R. H. Schonmann, Second order large deviation estimates for ferromagnetic systems in the phase coexistence region, Commun. Math. Phys. 112:409 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, K.S., Cesi, F., Chayes, L. et al. Convergence to Equilibrium of Random Ising Models in the Griffiths Phase. Journal of Statistical Physics 92, 337–351 (1998). https://doi.org/10.1023/A:1023077101354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023077101354

Navigation