Skip to main content
Log in

Projection of Markov Measures May Be Gibbsian

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the induced measure obtained from a 1-step Markov measure, supported by a topological Markov chain, after the mapping of the original alphabet onto another one. We give sufficient conditions for the induced measure to be a Gibbs measure (in the sense of Bowen) when the factor system is again a topological Markov chain. This amounts to constructing, when it does exist, the induced potential and proving its Hölder continuity. This is achieved through a matrix method. We provide examples and counterexamples to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. R. Bowen, Some systems with unique equilibrium states, Math. Systems Theory 8:193-202 (1974/75).

    Google Scholar 

  2. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470 (Springer-Verlag, 1975).

  3. M. Boyle and S. Tuncel, Infinite-to-one codes and Markov measures, Trans. Amer. Math. Soc. 285:657-684 (1986).

    Google Scholar 

  4. J.-R. Chazottes, E. Floriani, and R. Lima, Relative entropy and identification of Gibbs measures in dynamical systems, J. Statist. Phys. 90:697-725 (1998).

    Google Scholar 

  5. A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Statist. Phys. 72:879-1167 (1993).

    Google Scholar 

  6. R. Fernández, Measures for Lattice Systems, STATPHYS 20 (Paris, 1998), Phys. A 263:117-130 (1999).

    Google Scholar 

  7. G. Hansel and D. Perrin, Rational probability measures, Theoret. Comput. Sci. 65:171-188 (1989).

    Google Scholar 

  8. T. E. Harris, On chains of infinite order, Pacific J. Math. 5:707-24 (1955).

    Google Scholar 

  9. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54 (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  10. B. Kitchens, Symbolic Dynamics (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  11. B. Kitchens and S. Tuncel,Finitary measures for subshifts of finite type and sofic systems,Mem. Amer. Math. Soc. 58(1985).

  12. J. Lorinczi, C. Maes, and K. van de Velde, Transformations of Gibbs measures, Probab. Theory Related Fields 112:121-147 (1988).

    Google Scholar 

  13. C. Maes, F. Redig, F. Takens, A. van Moffaert, and E. Verbitski, Intermittency and weak Gibbs states, Nonlinearity 13:1681-1698 (2000).

    Google Scholar 

  14. C. Maes, F. Redig, S. Shlosman, and A. van Moffaert, Path large deviations and weak Gibbsianity, Comm. Math. Phys. 209:517-545.

  15. C. Maes and K. van de Velde, The fuzzy Potts model, J. Phys. A 28:4261-4270 (1995).

    Google Scholar 

  16. B. Marcus, K. Petersen, and S. Williams, Transmission rates and factor of Markov chains, Contemp. Math. (AMS) 26:279-293 (1984).

    Google Scholar 

  17. M. R. Palmer, W. Parry, and P. Walters, large sets of endomorphisms and of g‐measures, Lecture Notes in Math. 668:191-210 (1977).

    Google Scholar 

  18. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188, SMF, 1990.

  19. L. R. Rabiner, Mathematical Foundations of Hidden Markov Models, Recent advances in speech understanding and dialog systems (Bad Windsheim, 1987), pp. 183-205

  20. L. R. RabinerNATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., Vol. 46 (Springer, Berlin, 1988).

  21. E. Seneta, Non-Negative Matrices and Markov Chains, Springer Series in Statistics (Springer-Verlag, 1981).

  22. S. Shin, Measures that maximize weighted entropy for factor maps between subshifts of finite type, Ergodic Theory Dynam. Systems 21:1249-1272 (2001); An example of a factor map without a saturated compensation function, preprint.

    Google Scholar 

  23. P. Walters, Relative pressure, relative equilibrium states, compensation functions and many-to-one codes between subshifts, Trans. Amer. Math. Soc. 296:1-31 (1986).

    Google Scholar 

  24. M. Yuri, Weak Gibbs measures for certain non-hyperbolic systems, Ergodic Theory Dynam. Systems 20:1495-1518 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazottes, JR., Ugalde, E. Projection of Markov Measures May Be Gibbsian. Journal of Statistical Physics 111, 1245–1272 (2003). https://doi.org/10.1023/A:1023056317067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023056317067

Navigation