Skip to main content
Log in

The Asymmetric Avalanche Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An asymmetric stochastic process describing the avalanche dynamics on a ring is proposed. A general kinetic equation which incorporates the exclusion and avalanche processes is considered. The Bethe ansatz method is used to calculate the generating function for the total distance covered by all particles. It gives the average velocity of particles which exhibits a phase transition from an intermittent to continuous flow. We calculated also higher cumulants and the large deviation function for the particle flow. The latter has the universal form obtained earlier for the asymmetric exclusion process and conjectured to be common for all models of the Kardar–Parisi–Zhang universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. T. Liggett, Interacting Particle Systems (Springer, Berlin, 1985)

    Google Scholar 

  2. V. Privman, ed., Nonequilibrium Statistical Mechanics in one Dimension (Cambridge University Press, 1997).

  3. J. Krug, Origins of scale invariance in growth processes, Adv. Phys. 46:139(1997).

    Google Scholar 

  4. M. Paczuski, S. Maslov, and P. Bak, Avalanche dynamics in evolution, growth, and depinning models, Phys. Rev. E 53:414-443 (1996).

    Google Scholar 

  5. T. Halpin-Healy and Y.-C. Zhang, Kinetic roughening phenomena stochastic growth directed polymers and all that, Phys. Rep. 254:215(1995).

    Google Scholar 

  6. M. Schreckenberg and D. E. Wolf, Traffic and Granular Flow 97 (Springer, Berlin, 1998).

    Google Scholar 

  7. D. Forester, D. R. Nelson, and M. J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16:732(1977).

    Google Scholar 

  8. M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889-892 (1986).

    Google Scholar 

  9. D. Dhar, An exactly solved model for interfacial growth, Phase Trans. 9:51(1987).

    Google Scholar 

  10. L. H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev. A 46:844(1992).

    Google Scholar 

  11. B. Derrida and J. L. Lebowitz, Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett. 80:209-213 (1998).

    Google Scholar 

  12. G. M. Schütz, Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys. 88(1/2) (1997).

  13. B. Derrida, An exactly soluble non-equilibrium system: The asymmetric simple exclusion model, Phys. Rep. 301:65(1998).

    Google Scholar 

  14. G. M. Schutz, R. Ramaswamy, and M. Barma, Pairwise balance and invariant measures for generalized exclusion processes, J. Phys. A: Math. Gen. 29:837-843 (1996).

    Google Scholar 

  15. M. Alimohammadi, V. Karimipour, and M. Khorrami, A two-parametric family of asymmetric exclusion processes and its exact solution, J. Stat. Phys. 97:373-394 (1999).

    Google Scholar 

  16. T. Sasamoto and M. Wadati, One-dimensional asymmetric diffusion model without exclusion, Phys. Rev. E 58:4181-4190 (1998).

    Google Scholar 

  17. M. Khorrami, Exact determination of the phase structure of a multi-species asymmetric exclusion process, J. Stat. Phys. 100(5):999-1030 (2000).

    Google Scholar 

  18. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59:381(1987)

    Google Scholar 

  19. P. Bak, C. Tang, and K. WiesenfeldPhys. Rev. A 38:364(1988).

    Google Scholar 

  20. P. Bak, How Nature Works: The Science of Self Organized Criticality (Springer-Verlag, 1996).

  21. S. S. Manna, Two-state model of self-organized criticality, J. Phys. A: Math. Gen. 24(7):L363-L369 (1991).

    Google Scholar 

  22. A. Vespignani, R. Dickman, M. A. Munoz, and S. Zapperi, Absorbing-state phase transitions in fixed-energy sandpiles, Phys. Rev. E 62:4564(2000).

    Google Scholar 

  23. V. B. Priezzhev,E. V. Ivashkevich,A. M. Povolotsky, and C.-K. Hu, Exact phase diagram for an asymmetric avalanche process, Phys. Rev. Lett. 87(6):084301-1—084301-4 (2001).

    Google Scholar 

  24. S. Maslov and Y. C. Zhang, Exactly solved model of self-organized criticality, Phys. Rev. Lett. 75:1550(1995).

    Google Scholar 

  25. H. Jeong, B. Kahng, and D. Kim, Anisotropic surface growth model in disordered media, Phys. Rev. Lett. 77:5094-5097 (1996).

    Google Scholar 

  26. B. Tadic and D. Dhar, Emergent spatial structures in critical sandpiles, Phys. Rev. Lett. 79:1519-1522 (1997).

    Google Scholar 

  27. M. Paczuski and K. E. Bassler, Theoretical results for sandpile models of self-organized criticality with multiple topplings, Phys. Rev. E 62:5347-5352 (2000).

    Google Scholar 

  28. M. Kloster, S. Maslov, and C. Tang, Exact solution of a stochastic directed sandpile model, Phys. Rev. E 63:026111(2001).

    Google Scholar 

  29. C.-C. Chen and M. den Nijs, An interface view of directed sandpile dynamics, Phys. Rev. E 65:031309(2002).

    Google Scholar 

  30. G. Odor, Phase transition universality classes of classical, nonequilibrium systems, cond-mat/0205644.

  31. B. Derrida and C. Appert, Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension, J. Stat. Phys. 94(1):1-30 (1999).

    Google Scholar 

  32. E. Brunet and B. Derrida, Probability distribution of the free energy of a directed polymer in a random medium, Phys. Rev. E 61(6):6789-6801.

  33. D. Kim, Bethe ansatz solution for crossover scaling functions of the asymmetric XYZ chain and the Kardar-Parisi-Zhang type growth model, Phys. Rev. E 52:3512(1995).

    Google Scholar 

  34. D.-S. Lee and D. Kim, Large deviation function of the partially asymmetric exclusion process, Phys. Rev. E 59:6476(1999).

    Google Scholar 

  35. A. M. Povolotsky, V. B. Priezzhev, and C.-K. Hu, Finite size behavior of the asymmetric avalanche process, Physica A 321:280(2003).

    Google Scholar 

  36. B. Satherland, C. N. Yang, and C. P. Yang, Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field, Phys. Rev. Lett. 19:588(1967).

    Google Scholar 

  37. I. Nolden, The asymmetric six-vertex model, J. Stat. Phys. 67:155(1992).

    Google Scholar 

  38. D. J. Bukman and J. D. Shore, The conical point in the ferroelectric six-vertex model, J. Stat. Phys. 78:1277(1995).

    Google Scholar 

  39. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum inverse scattering method and correlation functions (Cambridge University Press, 1993).

  40. J. Dieudonne, Infinitesimal Calculus (Hermann, Paris, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povolotsky, A.M., Priezzhev, V.B. & Hu, CK. The Asymmetric Avalanche Process. Journal of Statistical Physics 111, 1149–1182 (2003). https://doi.org/10.1023/A:1023048115250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023048115250

Navigation