Skip to main content
Log in

Anomalies in Multifractal Formalism for Local Time of Brownian Motion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Renyi function for the logical time measure μ of Brownian motion is found. It is shown that this function, the Legendre transform of the multifractal spectrum of μ and the τ-function derived by the reciprocal measure formalism are not identical. More examples of μ having similar anomalies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bertoin, Lévy processes, in Cambridge Tracts in Mathematics, Vol. 121 (Cambridge Univ. Press, 1996).

  2. J. Bertoin, The inviscid Burgers equation with Brownian initial velocity, Preprint (1997).

  3. R. Cawley and R. D. Mauldin, Multifractal decomposition of Moran fractals, Adv. Math. 92:196–236 (1992).

    Google Scholar 

  4. P. Collet and F. Koukiou, Large deviations for multiplicative chaos, Commun. Math. Phys. 147:329–342 (1992).

    Google Scholar 

  5. D. Dolgopyat and V. Sidorov, Multifractal properties of the sets of zeroes of Brownian paths, Fund. Math. 147:2, 157–171 (1995).

    Google Scholar 

  6. K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Prob. 7:3, 681–702 (1996).

    Google Scholar 

  7. X. Fernique, Regularite des trajectories des functions aleatoires gaussiennes, Lectures Notes in Mathematics, Vol. 480:2–187 (1975).

  8. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, 1995).

  9. D. Geman and J. Horowitz, Occupation densities, Ann. Probab. 8:1–67 (1980).

    Google Scholar 

  10. T. C. Hulsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. J. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33:1141–1151 (1986).

    Google Scholar 

  11. K. Ito and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths (Springer-Verlag, 1965).

  12. S. Jaffard, The multifractal nature of Levy processes, Preprint (1997).

  13. J. P. Kahane, Some random series of functions, in Cambridge Studies in Advanced Mathematics, Vol. 5 (Cambridge Univ. Press, 1985), p. 305.

  14. R. D. Mauldin and M. Urbański, Dimensions and measure in infinite iterated function systems, Proc. London. Math. Soc. (3) 73:105–154 (1996).

    Google Scholar 

  15. G. M. Molchan, Multifractal analysis of Brownian zero set, J. Stat. Phys. 79(3/4):701–730 (1995).

    Google Scholar 

  16. G. M. Molchan, Scaling exponents and multifractal dimensions for independent random cascades, Commun. Math. Phys. 179:681–702 (1996).

    Google Scholar 

  17. G. M. Molchan, Turbulent cascades: Limitations and statistical test of the log-normal hypothesis, Physics of Fluids 9:(8), 2387–2396 (1997).

    Google Scholar 

  18. G. Molchan and Ju. Golosov, Gaussian stationary processes with asymptotic power spectrum, Soviet. Math. Dokl. 10(1):134–137 (1969).

    Google Scholar 

  19. E. Nummelin, General irreducible Markov chains and non-negative operators (Cambridge Univ. Press, 1984).

  20. L. Olsen, Random Geometrically Graph Directed Self-similar Multifractals, Pitman Research Notes in Math. Ser. 307. (Longman, Harlow, 1994).

    Google Scholar 

  21. L. Olsen, A Multifractal formalism, Adv. Math. 116:82–195 (1995).

    Google Scholar 

  22. S. Orey and S. J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. (3) 28:174–192 (1974).

    Google Scholar 

  23. G. Parisi and U. Frisch, On the singularity structure of fully developed turbulence, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1985), pp. 84–88.

    Google Scholar 

  24. R. H. Reid and B. Mandelbrot, Multifractal formalism for multinomial measures, Adv. in Appl. Math. 16:132–150 (1995).

    Google Scholar 

  25. Z. She, E. Aurell, and U. Frisch, The inviscid Burgers equation with initial data of Brownian type, Commun. Math. Phys. 148:623–641 (1992).

    Google Scholar 

  26. Y. G. Sinai, Statistics of shocks in solutions of the inviscid Burgers equation, Commun. Math. Phys. 148:601–621 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molchan, G.M. Anomalies in Multifractal Formalism for Local Time of Brownian Motion. Journal of Statistical Physics 91, 199–220 (1998). https://doi.org/10.1023/A:1023044221942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023044221942

Navigation