Skip to main content
Log in

Phase Transitions and Topology Changes in Configuration Space

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The relation between thermodynamic phase transitions in classical systems and topological changes in their configuration space is discussed for two physical models and contains the first exact analytic computation of a topologic invariant (the Euler characteristic) of certain submanifolds in the configuration space of two physical models. The models are the mean-field XY model and the one-dimensional XY model with nearest-neighbor interactions. The former model undergoes a second-order phase transition at a finite critical temperature while the latter has no phase transitions. The computation of this topologic invariant is performed within the framework of Morse theory. In both models topology changes in configuration space are present as the potential energy is varied; however, in the mean-field model there is a particularly “strong” topology change, corresponding to a big jump in the Euler characteristic, connected with the phase transition, which is absent in the one-dimensional model with no phase transition. The comparison between the two models has two major consequences: (i) it lends new and strong support to a recently proposed topological approach to the study of phase transitions; (ii) it allows us to conjecture which particular topology changes could entail a phase transition in general. We also discuss a simplified illustrative model of the topology changes connected to phase transitions using of two-dimensional surfaces, and a possible direct connection between topological invariants and thermodynamic quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. C. N. Yang and T. D. Lee, Phys. Rev. 87:404(1952).

    Google Scholar 

  2. T. D. Lee and C. N. Yang, Phys. Rev. 87:410(1952).

    Google Scholar 

  3. D. Ruelle, Statistical Mechanics: Rigorous Results (World Scientific, Singapore, 1999).

    Google Scholar 

  4. See, e.g., H. O. Georgii, Gibbs Measures and Phase Transitions (de Gruyter, New York, 1988).

    Google Scholar 

  5. D. H. E. Gross, Microcanonical Thermodynamics, Phase Transitions in Small Systems (World Scientific, Singapore, 2001).

    Google Scholar 

  6. L. Caiani, L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. Lett. 79:4361(1997).

    Google Scholar 

  7. R. Franzosi, L. Casetti, L. Spinelli, and M. Pettini, Phys. Rev. E 60:R5009(1999).

    Google Scholar 

  8. L. Casetti, E. G. D. Cohen, and M. Pettini, Phys. Rev. Lett. 82:4160(1999).

    Google Scholar 

  9. R. Franzosi, M. Pettini, and L. Spinelli, Phys. Rev. Lett. 84:2774(2000).

    Google Scholar 

  10. L. Casetti, M. Pettini, and E. G. D. Cohen, Phys. Rep. 337:237(2000).

    Google Scholar 

  11. M. Cerruti-Sola, C. Clementi, and M. Pettini, Phys. Rev. E 61:5171(2000).

    Google Scholar 

  12. M. Nakahara, Geometry, Topology and Physics (Adam Hilger, Bristol, 1991).

    Google Scholar 

  13. J. Milnor, Morse Theory (Princeton University Press, Princeton, 1951).

    Google Scholar 

  14. R. S. Palais and C. Terng, Critical Point Theory and Submanifold Geometry (Springer, NY, 1988).

    Google Scholar 

  15. R. Franzosi, M. Pettini, and L. Spinelli, cond-mat/0104110, and in preparation.

  16. L. Casetti, E. G. D. Cohen, and M. Pettini, Phys. Rev. E 65:036112(2002).

    Google Scholar 

  17. M. Antoni and S. Ruffo, Phys. Rev. E 52:2361(1995).

    Google Scholar 

  18. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965).

    Google Scholar 

  19. P. G. Debenedetti and F. H. Stillinger, Nature 410:259(2001).

    Google Scholar 

  20. L. Angelani et al., Phys. Rev. Lett. 85:5356(2000)

    Google Scholar 

  21. A. Cavagna, I. Giardina, and G. Parisi, J. Phys. A: Math. Gen. 34:5317(2001)

    Google Scholar 

  22. T. S. Grigera, A. Cavagna, I. Giardina, and G. Parisi,Phys. Rev. Lett. 88:055502(2002)

    Google Scholar 

  23. R. M. C. de Almeida, N. Lemke, and I. A. Campbell, cond-mat/0003351.

  24. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry-Methods and Applications (Parts I, II, and III, Springer, NY, 1985).

    Google Scholar 

  25. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 1996).

    Google Scholar 

  26. M. Spivak, Comprehensive Introduction to Differential Geometry (Publish or Perish, Berkeley, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casetti, L., Pettini, M. & Cohen, E.G.D. Phase Transitions and Topology Changes in Configuration Space. Journal of Statistical Physics 111, 1091–1123 (2003). https://doi.org/10.1023/A:1023044014341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023044014341

Navigation