Skip to main content
Log in

Finite-Size Scaling in the p-State Mean-Field Potts Glass: A Monte Carlo Investigation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The p-state mean-field Potts glass with bimodal bond distribution (±J) is studied by Monte Carlo simulations, both for p = 3 and p = 6 states, for system sizes from N = 5 to N = 120 spins, considering particularly the finite-size scaling behavior at the exactly known glass transition temperature T c. It is shown that for p = 3 the moments q (k) of the spin-glass order parameter satisfy a simple scaling behavior, \(q^{(k)} \alpha N^{--k/3} \tilde f_k \{ N^{1/3} (1--T/T_c )\} ,{\text{ }}k = 1,2,3,...,\tilde f_k \) being the appropriate scaling function and T the temperature. Also the specific heat maxima have a similar behavior, \(c_V^{\max } \alpha {\text{ }}const--N^{--1/3} \), while moments of the magnetization scale as \(m^{(k)} \alpha N^{--k/2} \). The approach of the positions T max of these specific heat maxima to T c as N → ∞ is nonmonotonic. For p = 6 the results are compatible with a first-order transition, q (k) → (q jump)k as N → ∞ but since the order parameter q jump at T c is rather small, a behavior q (k)N -k/3 as N → ∞ also is compatible with the data. Thus no firm conclusions on the finite-size behavior of the order parameter can be drawn. The specific heat maxima c maxV behave qualitatively in the same way as for p = 3, consistent with the prediction that there is no latent heat. A speculative phenomenological discussion of finite-size scaling for such transitions is given. For small N (N ≤15 for p = 3, N ≤ 12 for p = 6) the Monte Carlo data are compared to exact partition function calculations, and excellent agreement is found. We also discuss ratios \(R_x \equiv [(\langle X\rangle _T - [\langle X\rangle _T ]_{{\text{av}}} )^2 ]_{{\text{av}}} /[\langle X\rangle _T ]_{{\text{av}}}^2 \), for various quantities X, to test the possible lack of self-averaging at T c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Binder and A. P. Young, Rev. Mod. Phys. 58:801 (1986).

    Google Scholar 

  2. M. Mezard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  3. K. H. Fischer and J. Hertz. Spin Glasses (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  4. D. S. Stein, Spin Glasses and Biology (World Scientific, Singapore, 1992).

    Google Scholar 

  5. D. Elderfield and D. Sherrington, J. Phys. C 16:L491, L971, L1169 (1983).

    Google Scholar 

  6. D. J. Gross, I. Kanter, and H. Sompolinsky, Phys. Rev. Lett. 55:304 (1985).

    Google Scholar 

  7. G. Cwilich and T. R. Kirkpatrick, J. Phys. A 22:4971 (1989).

    Google Scholar 

  8. G. Cwilich, J. Phys. A 23:5029 (1990).

    Google Scholar 

  9. R. Pirc and B. Tadic, Phys. Rev. B 54:7121 (1996).

    Google Scholar 

  10. K. Binder and J. D. Reger, Adv. Phys. 41:547 (1992).

    Google Scholar 

  11. K. Binder, in Spin Glasses and Random Fields, A. P. Young, ed. (World Scientific, Singapore, 1998), p. 99.

    Google Scholar 

  12. U. T. Höchli, K. Knorr, and A. Loidl, Adv. Phys. 39:405 (1990).

    Google Scholar 

  13. F. Y. Wu, Rev. Mod. Phys. 54:235 (1982); 55:315(E) (1983).

    Google Scholar 

  14. T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. B 35:3072; 36:8552 (1987).

    Google Scholar 

  15. T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. B 36:5388; 37:5342 (1987); D. Thirumalai and T. R. Kirkpatrick, Phys. Rev. B 38:4881 (1988).

    Google Scholar 

  16. W. Götze and L. Sjögren, Rep. Progr. Phys. 55:241 (1992).

    Google Scholar 

  17. M. Scheucher and J. D. Reger, Z. Phys. B 91:383 (1993).

    Google Scholar 

  18. M. E. Fisher, in Critical Phenomena, Proc. 1970 Enrico Fermi International School on Physics, M. S. Green, ed. (Academic, New York, 1971), p. 1.

    Google Scholar 

  19. M. N. Barber, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1983), p. 145.

    Google Scholar 

  20. V. Privman (ed.), Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  21. K. Binder, Ferroelectrics 73:43 (1987); in Computational Methods in Field Theory, H. Gausterer and C. B. Lang, eds. (Springer, Berlin, 1992), p. 59.

    Google Scholar 

  22. A. P. Young and S. Kirkpatrick, Phys. Rev. B 25:440 (1982).

    Google Scholar 

  23. G. Parisi, F. Ritort, and F. Slanina, J. Phys. A 26:247,3775 (1993).

    Google Scholar 

  24. G. Parisi and F. Ritort, J. Phys. A 26:6711 (1993); J. C. Ciria, G. Parisi, and F. Ritort, J. Phys. A 26:6731 (1993).

    Google Scholar 

  25. B. O. Peters, B. Dünweg, K. Binder, M. d'Onorio de Meo, and K. Vollmayr, J. Phys. A 29:3503 (1996).

    Google Scholar 

  26. S. Wiseman and E. Domany, Phys. Rev. E 52:3469 (1995).

    Google Scholar 

  27. A. Aharony and A. B. Harris, Phys. Rev. Lett. 77:3700 (1996).

    Google Scholar 

  28. R. K. P. Zia and D. J. Wallace, J. Phys. A 8:1495 (1975).

    Google Scholar 

  29. M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 86:1841 (1986).

    Google Scholar 

  30. O. Dillmann, Diplomarbeit (Universität Mainz, 1997), unpublished.

  31. M. Scheucher, J. D. Reger, K. Binder, and A. P. Young, Phys. Rev. B 42:6881 (1990).

    Google Scholar 

  32. M. Suzuki, Progr. Theor. Phys. 58:1157 (1977).

    Google Scholar 

  33. M. Aizenman, Nucl. Phys. B 485:551 (1997).

    Google Scholar 

  34. C. Borgs, J. Chayes, H. Kerten, and J. Spencer, “The birth of the infinite cluster: Finite size scaling in percolation” (1997), preprint.

  35. C. Fortuin and P. Kasteleyn, Physica 57:536 (1972).

    Google Scholar 

  36. C. Borgs and R. Kotecký, J. Stat. Phys. 61:79 (1991); C. Borgs, R. Kotecký, and S. Miracle-Solé, J. Stat. Phys. 62:529 (1991).

    Google Scholar 

  37. W. Janke, Phys. Rev. B 47:14757 (1993).

    Google Scholar 

  38. K. Vollmayr, J. D. Reger, M. Scheucher, and K. Binder, Z. Phys. B 91:113 (1993).

    Google Scholar 

  39. A. Milchev, K. Binder, and D. W. Heermann, Z. Phys. B 63:521 (1986).

    Google Scholar 

  40. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61:2635 (1988); 63:1195 (1989).

    Google Scholar 

  41. H. Müller-Krumbhaar and K. Binder, J. Stat. Phys. 8:1 (1973).

    Google Scholar 

  42. A. M. Ferrenberg, D. P. Landau, and K. Binder, J. Stat. Phys. 63:867 (1991).

    Google Scholar 

  43. W. Janke, in Computational Physics: Selected Methods, Simple Exercises, Serious Applications, K. H. Hoffmann and M. Schreiber, eds. (Springer, Berlin, 1996), p. 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillmann, O., Janke, W. & Binder, K. Finite-Size Scaling in the p-State Mean-Field Potts Glass: A Monte Carlo Investigation. Journal of Statistical Physics 92, 57–100 (1998). https://doi.org/10.1023/A:1023043602398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023043602398

Navigation