Skip to main content
Log in

Adiabatic Decoherence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a general quantum system interacting with environment modeled by a bosonic heat bath of Caldeira and Leggett type. General interaction Hamiltonians are considered that commute with the system's Hamiltonian so that there is no energy exchange between the system and bath. We argue that this model provides an appropriate description of adiabatic quantum decoherence, i.e., loss of entanglement on time scales short compared to those of thermal relaxation processes associated with energy exchange with the bath. The interaction Hamiltonian is then proportional to a conserved “pointer observable.” Calculation of the elements of the reduced density matrix of the system is carried out exactly, and the time-dependence of decoherence is identified, similar to recent results for related models. Our key finding is that the decoherence process is controlled by spectral properties of the interaction rather than the system's Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. G. van Kampen, J. Stat. Phys. 78:299 (1995).

    Google Scholar 

  2. J. Shao, M.-L. Ge and H. Cheng, Phys. Rev. E 53:1243 (1996).

    Google Scholar 

  3. Review: H. Brandt, in SPIE Conf. AeroSence 97, Proc. Vol. no. 3076, p. 51 (SPIE Publ., 1997).

  4. W. H. Zurek, Physics Today, p. 36 (1991).

  5. W. G. Unruh and W. H. Zurek, Phys. Rev. D 40:1071 (1989).

    Google Scholar 

  6. W. H. Zurek, S. Habib, and J. P. Paz, Phys. Rev. Lett. 70:1187 (1993).

    Google Scholar 

  7. M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 77:4887 (1996).

    Google Scholar 

  8. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46:211 (1981).

    Google Scholar 

  9. S. Chakravarty and A. J. Leggett, Phys. Rev. Lett. 52:5 (1984).

    Google Scholar 

  10. Review: A. J. Legget, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, and W. Zwerger, Rev. Mod. Phys. 59:1 (1987) [Erratum ibid. 67:725 (1995)].

    Google Scholar 

  11. A. O. Caldeira and A. J. Leggett, Physica A 121:587 (1983).

    Google Scholar 

  12. Review: A. Ekert and R. Jozsa, Rev. Mod. Phys. 68:733 (1996).

    Google Scholar 

  13. Review: D. P. DiVincenzo, Science 270:255 (1995).

    Google Scholar 

  14. G. M. Palma, K. A. Suominen, and A. K. Ekert, Proc. Royal Soc. London A 452:567 (1996).

    Google Scholar 

  15. W. G. Unruh, Phys. Rev. A 51:992 (1995).

    Google Scholar 

  16. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75:3788 (1995).

    Google Scholar 

  17. A. Garg, Phys. Rev. Lett. 77:764 (1996).

    Google Scholar 

  18. I. S. Tupitsyn, N. V. Prokof'ev, and P. C. E. Stamp, Int. J. Modern Phys. B 11:2901 (1997).

    Google Scholar 

  19. Review: J. Preskill, Reliable quantum computers, preprint (available at http://xxx.lanl.gov/abs/quant-ph/9705031).

  20. Review: D. P. DiVincenzo, Topics in quantum computers, preprint (available at http://xxx.lanl.gov/abs/cond-mat/9612126).

  21. E. Knill and R. Laflamme, Phys. Rev. A 55:900 (1997).

    Google Scholar 

  22. P. Shor, Fault-tolerant quantum computation, preprint (available at http://xxx.lanl.gov/abs/quant-ph/9605011).

  23. Review: D. Gottesman, Stabilizer codes and quantum error correction, preprint (available at http://xxx.lanl.gov/abs/quant-ph/9705052).

  24. D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error, preprint (available at http://xxx.lanl.gov/abs/quant-ph/9611025).

  25. A. Steane, Active stabilisation, quantum computation and quantum state synthesis, preprint (available at http://xxx.lanl.gov/abs/quant-ph/9611027).

  26. C. W. Gardiner Handbook of Stochastic Methods for Physis, Chemistry and the Natural Sciences (Springer-Verlag, 1990).

  27. A. J. Leggett, in Percolation, Localization and Superconductivity, NATO ASI Series B: Physics, Vol. 109, A. M. Goldman and S. A. Wolf, eds. (Plenum, New York 1984), p. 1.

    Google Scholar 

  28. J. P. Sethna, Phys. Rev. B 24:698 (1981).

    Google Scholar 

  29. Review: A. O. Caldeira and A. J. Leggett, Ann. Phys. 149:374 (1983).

    Google Scholar 

  30. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Section 22.6, p. 1100 (Cambridge University Press, 1995).

  31. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill Book Company, 1965).

  32. G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6:504 (1965).

    Google Scholar 

  33. A. J. Bray and M. A. Moore, Phys. Rev. Lett. 49:1546 (1982).

    Google Scholar 

  34. L.-D. Chang and S. Chakravarty, Phys. Rev. B 31:154 (1985).

    Google Scholar 

  35. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).

    Google Scholar 

  36. Review: M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106:121 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozyrsky, D., Privman, V. Adiabatic Decoherence. Journal of Statistical Physics 91, 787–799 (1998). https://doi.org/10.1023/A:1023042014131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023042014131

Navigation