Skip to main content
Log in

Metastability and Spinodal Points for a Random Walker on a Triangle

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate time-dependent properties of a single-particle model in which a random walker moves on a triangle and is subjected to nonfocal boundary conditions. This model exhibits spontaneous breaking of a Z 2 symmetry. The reduced size of the configuration space (compared to related many-particle models that also show spontaneous symmetry breaking) allows us to study the spectrum of the time evolution operator. We break the symmetry explicitly and find a stable phase, and a metastable phase which vanishes at a spinodal point. At this point, the spectrum of the time evolution operator has a gapless and universal band of excitations with a dynamical critical exponent z=1. Surprisingly, the imaginary parts of the eigenvalues E j(L) are equally spaced, following the rule \(\mathcal{J}E_j (L) \propto j/L\). Away from the spinodal point, we find two time scales in the spectrum. These results are related to scaling functions for the mean path of the random walker and to first passage times. For the spinodal point, we find universal scaling behavior. A simplified version of the model which can be handled analytically is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel, Phys. Rev. Lett. 74:208 (1995); and J. Stat. Phys. 80:69.

    Google Scholar 

  2. B. Derrida, E. Domany, and D. Mukamel, J. Stat. Phys. 69:667 (1992).

    Google Scholar 

  3. G. Schütz and E. Domany, J. Stat. Phys. 72:277 (1993).

    Google Scholar 

  4. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys. A: Math. Gen. 26:1493 (1993).

    Google Scholar 

  5. P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Phys. A: Math. Gen. 31:L45 (1998).

    Google Scholar 

  6. C. Godrèche, J. M. Luck, M. R. Evans, D. Mukamel, S. Sandow, and S. R. Speer, J. Phys. A: Math. Gen. 28:6039 (1995).

    Google Scholar 

  7. C. H. Bennett and G. Grinstein, Phys. Rev. Lett. 55:657 (1985).

    Google Scholar 

  8. P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Stat. Phys. 90:783 (1998).

    Google Scholar 

  9. S. A. Janowsky and J. L. Lebowitz, Phys. Rev. A 45:618 (1992).

    Google Scholar 

  10. G. Schütz, J. Stat. Phys. 71:471 (1993).

    Google Scholar 

  11. K. Mallick, J. Phys. A: Math. Gen. 29:5375 (1996).

    Google Scholar 

  12. V. Privman and L. S. Schulman, J. Phys. A: Math. Gen. 15:L238 (1982); and J. Stat. Phys. 29:205.

    Google Scholar 

  13. F. H. L. Eßler and V. Rittenberg, J. Phys. A: Math. Gen. 29:3375 (1996).

    Google Scholar 

  14. R. B. Griffiths, C.-Y. Weng, and J. S. Langer, Phys. Rev. 149:301 (1966); J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, p. 267, C. Domb and J. L. Lebowitz, eds. (Academic Press, 1989).

    Google Scholar 

  15. Y. Saad, Numerical Methods for Large Eigenvalue Problems (Manchester University Press, 1992).

  16. R. Bulirsch and J. Stoer, Numer. Math. 6:413 (1964); M. Henkel and G. Schütz, J. Phys. A: Math. Gen. 21:2617 (1988).

    Google Scholar 

  17. M. den Nijs, in Proceedings of the 4th Workshop on Statistical Physics (Scoul, January 27–31, 1997).

  18. M. N. Barber, Finite-size scaling, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (1983).

  19. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (1981); C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, P.F., Heinzel, T. Metastability and Spinodal Points for a Random Walker on a Triangle. Journal of Statistical Physics 92, 837–864 (1998). https://doi.org/10.1023/A:1023036408873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023036408873

Navigation