Skip to main content
Log in

A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a nonlinear Fokker–Planck equation for a one-dimensional granular medium. This is a kinetic approximation of a system of nearly elastic particles in a thermal bath. We prove that homogeneous solutions tend asymptotically in time toward a unique non-Maxwellian stationary distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Arnold, L. L. Bonilla, and P. A. Markowich, Liapunov functionals and large-time asymptotics of mean-field nonlinear Fokker-Planck equations, to appear on Transport Theory and Stat. Phys.

  2. D. Benedetto and E. Caglioti, in preparation.

  3. D. Benedetto, E. Caglioti, and M. Pulvirenti, A kinetic equation for granular media, Math. Mod. and Num. An. 31(5):615–641 (1997).

    Google Scholar 

  4. B. Bernu and R. Mazighi, One-dimensional bounce of inelastically colliding marbles on a wall, Jour. of Phys. A: Math. Gen. 23:5745–5754 (1990).

    Google Scholar 

  5. L. L. Bonilla, J. A. Carrillo, and J. Soler, Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math. 57:1343–1372 (1997).

    Google Scholar 

  6. F. Bouchut and J. Dolbeault, On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombian and Newtonian potentials, Diff. and Integ. Equations 8:487–514 (1995).

    Google Scholar 

  7. S. Campbell, Rapid Granular Flows, Ann. Rev. of Fluid Mech. 22:57–92 (1990).

    Google Scholar 

  8. J. A. Carrillo, Global weak solutions for the initial-boundary value problems to the Vlasov-Poisson-Fokker-Planck system, to appear on Math. Meth. in the Appl. Sci.

  9. P. Constantin, E. Grossman, and M. Mungan, Inelastic collisions of three particles on a line as a two-dimensional billiard, Physica D 83:409–420 (1995).

    Google Scholar 

  10. Y. Du, H. Li, and L. P. Kadanoff, Breakdown of hydrodynamics in a one-dimensional system of inelastic particles, Phys. Rev. Lett. 74(8):1268–1271 (1995).

    Google Scholar 

  11. S. E. Esipov and T. Pöschel, Boltzmann Equation and Granular Hydrodynamics, (preprint) (1995).

  12. I. Goldhirsch and G. Zanetti, Clustering instability in dissipative gases, Phys. Rev. Lett. 70:1619–1622 (1993).

    Google Scholar 

  13. P. K. Haff, Grain flow as a fluid mechanic phenomenon, J. Fluid Mech. 134:401–430 (1983).

    Google Scholar 

  14. Mc Kean, Lectures in Diff. Eqs, A. K. Aziz, ed. Von Nostrand, Vol. II, (1964), p. 177.

  15. S. Mac Namara and W. R. Young, Inelastic collapse and clumping in a one-dimensional granular medium, Phys. of Fluids A 4(3):496–504 (1992).

    Google Scholar 

  16. S. Mac Namara and W. R. Young, Kinetic of a one-dimensional granular in the quasi elastic limit medium, Phys. of Fluids A 5(1):34–45 (1993).

    Google Scholar 

  17. N. Sela and I. Goldhirsch, Hydrodynamics of a one-dimensional granular medium, Phys. of Fluids 7(3):34–45 (1995).

    Google Scholar 

  18. H. D. Victory and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson-Fokker-Planck systems, Indiana Univ. Math. J. 39:105–157 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, D., Caglioti, E., Carrillo, J.A. et al. A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media. Journal of Statistical Physics 91, 979–990 (1998). https://doi.org/10.1023/A:1023032000560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023032000560

Navigation