Skip to main content
Log in

(Almost) Gibbsian Description of the Sign Fields of SOS Fields

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An example is presented of a measure on a lattice system which has a measure zero set of points (configurations) where some conditional probability can be discontinuous, but does not become a Gibbs measure under decimation (or other) transformations. We also discuss some related issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Berretti, Some properties of random Ising models, J. Stat. Phys. 38:483–496 (1985).

    Google Scholar 

  2. E. Bolthausen, J.-D. Deuschel, and O. Zeitouni, Entropic repulsion of the lattice free field, Comm. Math. Phys. 170:417–443 (1995).

    Google Scholar 

  3. R. Brandenberger and C. E. Wayne, Decay of correlations in surface models, J. Stat. Phys. 27:425–440 (1982).

    Google Scholar 

  4. J. Bricmont, A. El Mellouki, and J. Fröhlich, Random surfaces in statistical mechanics: roughening, rounding, wetting..., J. Stat. Phys. 42:743–798 (1986).

    Google Scholar 

  5. J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys. 178:703–732 (1996).

    Google Scholar 

  6. J. Bricmont, A. Kupiainen, and R. Lefévere, Renormalization group pathologies and the definition of Gibbs states, Commun. Math. Phys. 194:359–388 (1998).

    Google Scholar 

  7. S. Yu. Dashian and B. S. Nahapetian, An approach towards description of random fields, Izv. Sat. Ak. Nauk Arm. 30:1–11 (1995).

    Google Scholar 

  8. R. L. Dobrushin, Private communication (1992), talk in Renkum meeting on probability and physics (1995) and posthumous manuscript, see also R. L. Dobrushin and S. B. Shlosman, Gibbsian representation of non-Gibbsian fields, Russ. Math. Surveys 25:285–299 (1997).

  9. R. L. Dobrushin and M. R. Martirosyan, Possibility of the high temperature phase transitions due to the many-particle nature of the potential, Theor. Math. Phys. 75:443–448 (1988).

    Google Scholar 

  10. R. L. Dobrushin and B. S. Nahapetian, Strong convexity of pressure, Theor. Math. Phys. 20:782–790 (1974).

    Google Scholar 

  11. T. C. Dorlas and A. C. D. van Enter, Non-Gibbsian limit for large-block majority-spin transformations, J. Stat. Phys. 55:171–181 (1989).

    Google Scholar 

  12. H. von Dreyfus, A. Klein, and J. F. Perez, Taming Griffiths singularities: infinite differentiability of correlation functions, Comm. Math. Phys. 170:21–39 (1995).

    Google Scholar 

  13. R. Fernández and C.-Ed. Pfister, Global specifications and non-quasilocality of projections of Gibbs measures, Ann. Prob. 25:1284–1315 (1997).

    Google Scholar 

  14. M. E. Fisher, On discontinuity of the pressure, Comm. Math. Phys. 26:6–14 (1972).

    Google Scholar 

  15. M. E. Fisher and G. W. Milton, Classifying first-order phase transitions, Physica A 138:22–54 (1986).

    Google Scholar 

  16. J. Fröhlich and J. Imbrie, Improved perturbation expansion for disordered systems: beating Griffiths singularities, Comm. Math. Phys. 96:145–180, 1984.

    Google Scholar 

  17. J. Fröhlich and B. Zegarlinski, The high temperature phase of a long range spin glass, Comm. Math. Phys. 110:121–155 (1987).

    Google Scholar 

  18. A. Gandolfi, C. M. Newman, and D. L. Stein, Exotic states in long-range spin glasses, Comm. Math. Phys. 157:371–387 (1993).

    Google Scholar 

  19. H.-O. Georgii, Gibbs Measures and Phase Transitions, Walter de Gruyter (de Gruyter Studies in Mathematics, Vol. 9), Berlin/New York, 1988.

  20. G. Gielis, Spin systems with random interactions: the Griffiths regime, Leuven Ph.D. dissertation, 1998.

  21. G. Gielis and C. Maes, The uniqueness regime of Gibbs fields with unbounded disorder, J. Stat. Phys. 81:829–835 (1995).

    Google Scholar 

  22. G. Gielis and C. Maes, High temperature behavior without analyticity, Markov Processes and Related Fields 2:41–50 (1996).

    Google Scholar 

  23. R. B. Griffiths, Non-analytic behavior above the critical point in a random Ising ferromagnet, Phys. Rev. Lett. 23:17–19 (1969).

    Google Scholar 

  24. R. B. Griffiths and P. A. Pearce, Position-space renormalization-group transformations: Some proofs and some problems, Phys. Rev. Lett. 41:917–920 (1978).

    Google Scholar 

  25. R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization-group transformations, J. Stat. Phys. 20:499–545 (1979).

    Google Scholar 

  26. R. B. Griffiths and D. Ruelle, Strict convexity (“continuity”) of the pressure in lattice systems, Comm. Math. Phys. 23:169–175.

  27. O. Häggström, Almost sure quasilocality fails for the random-cluster model on a tree, J. Stat. Phys. 84:1351–1361 (1996).

    Google Scholar 

  28. R. B. Israel, Banach algebras and Kadanoff transformations, in Random Fields (Esztergom, 1979), Vol. II, J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981), pp. 593–608.

    Google Scholar 

  29. T. Kennedy, Majority rule at low temperatures on the square and triangular lattices, J. Stat. Phys. 86:1089–1107 (1997).

    Google Scholar 

  30. J. L. Lebowitz and C. Maes, The effect of an external field on an interface, entropic repulsion, J. Stat. Phys. 46:39–49 (1987).

    Google Scholar 

  31. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, Heidelberg, New York, Tokyo, 1985).

    Google Scholar 

  32. J. Lörinczi, Some results on the projected two-dimensional Ising model, in On Three Levels, M. Fannes, C. Maes, and A. Verbeure, eds. (Plenum Press, New York, London, 1994), pp. 373–380.

    Google Scholar 

  33. J. Lörinczi, On limits of the Gibbsian formalism in thermodynamics, Groningen, Ph.D. dissertation, 1995.

  34. J. Lörinczi, Non-Gibbsianness of the reduced SOS-measure, Austin archives 97–178 and Stoch. Proc. Appl. 74:893–88 (1909).

    Google Scholar 

  35. J. Lörinczi and C. Maes, Weakly Gibbsian measures for lattice systems, J. Stat. Phys. 89:561–579 (1997).

    Google Scholar 

  36. J. Lörinczi, C. Maes, and K. Vande Velde, Transformations of Gibbs measures, Austin archives 97–571.

  37. J. Lörinczi and M. Winnink, Some remarks on almost Gibbs states, in Cellular Automata and Cooperative Systems, N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993), pp. 423–432.

    Google Scholar 

  38. C. Maes and S. Shlosman, Freezing transition in the lsing model without internal contours, preprint, Austin archives 98–163.

  39. C. Maes and K. Vande Velde, The (non-)Gibbsian nature of states invariant under stochastic transformations, Physica A 206:587–603 (1994).

    Google Scholar 

  40. C. Maes and K. Vande Velde, The fuzzy Potts model, J. Phys. A, Math. Gen. 28: 4261–4271 (1995).

    Google Scholar 

  41. C. Maes and K. Vande Velde, Relative energies for non-Gibbsian states, Comm. Math. Phys. 189:277–286 (1997).

    Google Scholar 

  42. F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization-group transformations, J. Stat. Phys. 72:1169–1177 (1993).

    Google Scholar 

  43. F. Martinelli and E. Olivieri, Instability of renormalization-group pathologies under decimation, J. Stat. Phys. 79:25–42 (1995).

    Google Scholar 

  44. C.-Ed. Pfister and K. Vande Velde, Almost sure quasilocality in the random cluster model, J. Stat. Phys. 79:765–774 (1995).

    Google Scholar 

  45. R. H. Schonmann, Projections of Gibbs measures may be non-Gibbsian, Comm. Math. Phys. 124:1–7 (1989).

    Google Scholar 

  46. G. L. Sewell, Statistical mechanical theory of metastable states, Lett. Nuovo Cimento 10:430–434 (1974).

    Google Scholar 

  47. W. G. Sullivan, Potentials for almost Markovian random fields, Comm. Math. Phys. 33:61–74 (1973).

    Google Scholar 

  48. A. C. D. van Enter, Ill-defined block-spin transformations at arbitrarily high temperatures, J. Stat. Phys. 83:761–765 (1996).

    Google Scholar 

  49. A. C. D. van Enter, On the possible failure of the Gibbs property for measures on lattice systems, Markov Proc. and Rel. Fields 2:209–224 (1996).

    Google Scholar 

  50. A. C. D. van Enter and R. Fernández, A remark on different norms and analyticlty for many-particle interactions, J. Stat. Phys. 56:965–972 (1989).

    Google Scholar 

  51. A. C. D. van Enter, R. Fernández, and R. Kotecký, Pathological behavior of renormalization group maps at high fields and above the transition temperature, J. Stat. Phys. 79:969–992 (1995).

    Google Scholar 

  52. A. C. D. van Enter, R. Fernández, and A. D. Sokal, Renormalization transformations in the vicinity of first-order phase transitions: What can and cannot go wrong, Phys. Rev. Lett. 66:3253–3256 (1991).

    Google Scholar 

  53. A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879–1167 (1993).

    Google Scholar 

  54. A. C. D. van Enter and J. Lörinczi, Robustness of the non-Gibbsian property: some examples, J. Phys. A, Math. and Gen. 29:2465–2473 (1996).

    Google Scholar 

  55. K. Vande Velde, On the question of quasilocality in large systems of locally interacting components, K. U. Leuven, Ph.D. dissertation, 1995.

  56. B. Zegarlinski, Spin glasses with long-range interactions at high temperature, J. Stat. Phys. 47:911–930 (1987).

    Google Scholar 

  57. B. Zegarlinski, Random spin systems with long-range interactions, in Mathematics of Spin Glasses and Neural Networks, A. Bovier and P. Picco, eds. (Birkhäuser, Boston, 1998), pp. 289–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Enter, A.C.D., Shlosman, S.B. (Almost) Gibbsian Description of the Sign Fields of SOS Fields. Journal of Statistical Physics 92, 353–368 (1998). https://doi.org/10.1023/A:1023024218192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023024218192

Navigation