Skip to main content
Log in

Phase Structure of Systems with Infinite Numbers of Absorbing States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Critical properties of systems exhibiting phase transitions into phases with infinite numbers of absorbing states are studied. We analyze a non-Markovian Langevin equation recently proposed to describe the critical behavior of such systems, and also introduce and study a non-Markovian discrete model, which is argued to present the same critical features. On the basis of mean-field analysis, Monte Carlo simulations, and theoretical arguments, we conclude that the phenomenology of the non-Markovian models closely parallels that of systems with many absorbing states in one and two dimensions. The “bulk” or “static” critical properties of these systems fall in the directed percolation (DP) universality class. By contrast, the critical properties associated with the spread of an initially localized seed exhibit a more complex behavior: Depending on parameter values they can, both in one and two dimensions, fall either in the dynamical percolation or DP universality class, or else exhibit apparently nonuniversal exponents. In contrast to previous results, however, the nonuniversal exponents in 2D are found to satisfy a scaling law which implies that a particular linear combination of them is universal and assumes DP values. These results demonstrate the efficacy of the non-Markovian approach for understanding systems with many absorbing states, which are difficult to analyze in their original microscopic formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. R. Broadbent and J. M. Hammersley, Proc. Camb. Philos. Soc. 53:629 (1957).

    Google Scholar 

  2. Percolation Structures and Processes, G. Deutsher, R. Zallen, and J. Adler, eds., Annals of the Israel Physical Society, Vol. 5 (Hilger, Bristol, 1983).

  3. J. Marro and R. Dickman, Nonequilibrium Phase Transitions and Critical Phenomena (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  4. J. Kohler and D. ben-Avraham, J. Phys. A 24:L621 (1991); D. ben-Avraham and J. Kohler, J. Stat. Phys. 65:839 (1992).

    Google Scholar 

  5. E. V. Albano, J. Phys. A 25:2557 (1992); A. Maltz and E. V. Albano, Surf. Sci. 277:414 (1992).

    Google Scholar 

  6. H. Takayasu and A. Yu. Tretyakov, Phys. Rev. Lett. 68:3060 (1992); I. Jensen, Phys. Rev. E 50:3623 (1994).

    Google Scholar 

  7. T. E. Harris, Ann. Phys. 2:969 (1974).

    Google Scholar 

  8. I. Jensen, H. C. Fogedby and R. Dickman, Phys. Rev. A 47:3411 (1990).

    Google Scholar 

  9. R. M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett. 56:2553 (1986).

    Google Scholar 

  10. A. S. Pikovsky and J. Kurths, Phys Rev. E 49:898 (1994).

    Google Scholar 

  11. G. Grinstein, M. A. Muñoz, and Y. Tu, Phys. Rev. Lett. 76:4376 (1996); Y. Tu, G. Grinstein, and M. A. Muñoz, Phys. Rev. Lett. 78:274 (1997).

    Google Scholar 

  12. M. A. Muñoz and T. Hwa, Europhys. Lett. 41:147 (1998).

    Google Scholar 

  13. M. J. Howard and U. Tauber, Preprint, cond-mat/9701069.

  14. P. Grassberger, J. Stat. Phys. 79:13 (1995).

    Google Scholar 

  15. P. Grassberger, Math. Biosci. 63:157 (1983).

    Google Scholar 

  16. J. Cardy, J. Phys. A 16:L709 (1983).

    Google Scholar 

  17. J. L. Cardy and P. Grassberger, J. Phys. A 18:L267 (1985); H. K. Janssen, Z. Phys. B 58:311 (1985).

    Google Scholar 

  18. K. De'Bell and J. W. Essam, J. Phys. A 16:3145 (1986).

    Google Scholar 

  19. See, for instance, A. L. Barabasi, G. Grinstein, and M. A. Muñoz, Phys. Rev. Lett. 76:1481 (1996), and references therein.

    Google Scholar 

  20. M. Paczuski, S. Maslov, and P. Bak, Europhys. Lett. 27:97 (1994); R. Dickman, A. Vespignani, and S. Zapperi, Phys. Rev. E 57:5095 (1998).

    Google Scholar 

  21. P. Grassberger and A. de la Torre, Ann. Phys. (N.Y.) 122:373 (1979).

    Google Scholar 

  22. H. K. Janssen, Z. Phys. B 42:151 (1981).

    Google Scholar 

  23. P. Grassberger, Z. Phys. B 47:365 (1982).

    Google Scholar 

  24. H. D. I. Abarbanel and J. B. Bronzan, Phys. Rev. D 9:2397 (1974).

    Google Scholar 

  25. J. L. Cardy and R. L. Sugar, J. Phys. A 13:L423 (1980); H. K. Janssen, Z. Phys. B 42:151 (1981).

    Google Scholar 

  26. See, for instance, I. Jensen, Phys. Rev. A 45:R563 (1992), and references therein.

    Google Scholar 

  27. G. Grinstein, Z.-W. Lai, and D. A. Browne, Phys. Rev. A 40:4820 (1989).

    Google Scholar 

  28. E. Domany and W. Kinzel, Phys. Rev. Lett. 53:311 (1984); J. W. Essam, J. Phys. A 22:4927 (1989).

    Google Scholar 

  29. L. Peliti, J. Phys. A 19:L365 (1986).

    Google Scholar 

  30. R. Dickman and A. Yu. Tretyakov, Phys. Rev. E 52:3218 (1995).

    Google Scholar 

  31. P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A 17:L105 (1984); P. Grassberger, J. Phys. A 22:L1103 (1989); M. H. Kim and H. Park, Phys. Rev. Lett. 73:2579 (1994); N. Menyhard, J. Phys. A 27:6139 (1994).

    Google Scholar 

  32. J. Cardy and U. C. Täuber, Phys. Rev. Lett. 77:4780 (1996).

    Google Scholar 

  33. D. A. Browne and P. Kleban, Phys Rev. A 40:1615 (1989).

    Google Scholar 

  34. K. Yaldram, K. M. Khan, N. Ahmed, and M. A. Khan, J. Phys. A 26:L801 (1993).

    Google Scholar 

  35. I. Jensen and R. Dickman, Phys. Rev. E 48:1710 (1993); I. Jensen, Int. J. Mod. Phys. B 8:3299 (1994); I. Jensen, Phys. Rev. Lett. 70:1465 (1993).

    Google Scholar 

  36. M. A. Muñoz, G. Grinstein, R. Dickman, and R. Livi, Phys. Rev. Lett. 76:451 (1996).

    Google Scholar 

  37. J. F. F. Mendes, R. Dickman, M. Henkel, and M. C. Marques, J. Phys. A 27:3019 (1994).

    Google Scholar 

  38. T. E. Harris, Ann. Prob. 2:969 (1974).

    Google Scholar 

  39. M. A. Muñoz, G. Grinstein, and Y. Tu, Survival Probability and Field Theory in Systems with Absorbing States, Phys. Rev. E 56:5101 (1997).

    Google Scholar 

  40. R. Dickman, Phys. Rev. E 53:2223 (1996).

    Google Scholar 

  41. G. Grinstein and A. Luther, Phys. Rev. B 13:1329 (1976).

    Google Scholar 

  42. M. A. Muñoz, G. Grinstein, R. Dickman, and R. Livi, Physica D 103:485 (1997).

    Google Scholar 

  43. A numerical scheme to analyze Langevin equations with absorbing states was proposed recently: R. Dickman, Phys. Rev. E 50:4404 (1994); see also ref. 44, for the application of that technique to the Langevin equation discussed in this work.

    Google Scholar 

  44. C. López and M. A. Muñoz, Numerical analysis of a Langevin equation for systems with infinite absorbing states, Phys. Rev. E 56:4864 (1997).

    Google Scholar 

  45. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  46. Z. Alexandrovich, Phys. Lett. A 80:284 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, M.A., Grinstein, G. & Dickman, R. Phase Structure of Systems with Infinite Numbers of Absorbing States. Journal of Statistical Physics 91, 541–569 (1998). https://doi.org/10.1023/A:1023021409588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023021409588

Navigation