Skip to main content
Log in

Heat Conduction Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study networks of interacting oscillators, driven at the boundary by heat baths at possibly different temperatures. A set of first elementary questions are discussed concerning the uniqueness of a stationary possibly Gibbsian density and the nature of the entropy production and the local heat currents. We also derive a Carnot efficiency relation for the work that can be extracted from the heat engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys. 201:657(1999).

    Google Scholar 

  2. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Stat. Phys. 95:305(1999).

    Google Scholar 

  3. G. W. Ford, M. Kac, and P. Mazur, Statistical mechanics of assemblies of coupled oscillators, J. Math. Phys. 6:504-515 (1965).

    Google Scholar 

  4. J. Fritz, Stationary states of hamiltonian systems with noise, in On Three Levels, M. Fannes, C. Maes, and A. Verbeure, eds. (Plenum Press, New York, 1994), pp. 203-214.

    Google Scholar 

  5. J. Fritz, T. Funaki, and J. L. Lebowitz, Stationary states of random hamiltonian systems, Probab. Theory Related Fields 99:211-236 (1994).

    Google Scholar 

  6. J. L. Lebowitz, Stationary nonequilibrium Gibbsian ensemble, Phys. Rev. 114:1192-1202 (1959).

    Google Scholar 

  7. R. S. Lipster and A. N. Shiryayev, Statistics of Random Processes I, II (Springer-Verlag, New York/Heidelberg/Berlin, 1978).

    Google Scholar 

  8. C. Maes, Fluctuation theorem as a Gibbs property, J. Stat. Phys. 95:367-392 (1999).

    Google Scholar 

  9. C. Maes and K. Netočn ý, Time-reversal and entropy, J. Stat. Phys. 110:269-310 (2003).

    Google Scholar 

  10. H. Nakazawa, On the lattice thermal conduction, Suppl. Prog. Theor. Phys. 45:231-262 (1970).

    Google Scholar 

  11. L. Rey-Bellet and L. E. Thomas, Fluctuations of the entropy production in anharmonic chains, Ann. Henri Poincaré 3:483-502 (2002).

    Google Scholar 

  12. L. Rey-Bellet and L. E. Thomas, Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators, Commun. Math. Phys. 215:1-24 (2000).

    Google Scholar 

  13. Z. Rieder, J. L. Lebowitz, and E. Lieb, Properties of a harmonic crystal in a stationary nonequilibrium state, J. Math. Phys. 8:1073-1078 (1967).

    Google Scholar 

  14. H. Spohn and J. L. Lebowitz, Stationary non-equilibrium states of infinite harmonic systems, Commun. Math. Phys. 54:97-120 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maes, C., Netočný, K. & Verschuere, M. Heat Conduction Networks. Journal of Statistical Physics 111, 1219–1244 (2003). https://doi.org/10.1023/A:1023004300229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023004300229

Navigation