Skip to main content
Log in

Existence, Stability, and Convergence of Solutions of Discrete Velocity Models to the Boltzmann Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the convergence of finite-difference approximations to solutions of the Boltzmann equation. An essential step is the proof of convergence of discrete approximations to the collision integral. This proof relies on our previous results on the consistency of this approximation. For the space-homogeneous problem we prove strong convergence of our discrete approximation to the strong solution of the Boltzmann equation. In the space-dependent case we prove weak convergence to DiPerna–Lions solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Arkeryd, On the Boltzmann equation I, II, Arch Rational Mech Anal. 45:1–34 (1972).

    Google Scholar 

  2. A. V. Bobylev, A. Palczewski, and J. Schneider, On approximation of the Boltzmann equation by discrete velocity models, C. R. Acad. Sci. Paris, Série I 320:639–644 (1995).

    Google Scholar 

  3. C. Buet. A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics, Transp. Theory Statist. Phys. 25:33–60 (1996).

    Google Scholar 

  4. H. Cabannes, The Discrete Boltzmann Equation (Theory and Application), Lecture Notes (University of California, Berkeley, 1980).

    Google Scholar 

  5. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gas (Publ. Scient. Inst. Mittag-Leffler, 1957).

    Google Scholar 

  6. G. DiBlasio, Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non-Maxwellian case, Comm. Math. Phys. 38:331–340 (1974).

    Google Scholar 

  7. R. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math. 130:321–366 (1989).

    Google Scholar 

  8. R. Gatignol, Théorie Cinétique des Gaz à Répartition Discrète des Vitesses, Lecture Notes in Physics, Vol. 36, Springer, Berlin/Heidelberg/New York, 1975.

    Google Scholar 

  9. D. Goldstein, B. Sturtevant, and J. E. Broadwell, Investigation of the motion of discretevelocity gases, in Rarefied Gas Dynamics: Theoretical and Computational Techniques, E. P. Muntz, D. P. Weaver and D. H. Campbell, eds., Progress in Astronautics and Aeronautics 118:100–117 (1989).

  10. D. B. Goldstein and B. Sturtevant, Discrete velocity gasdynamics simulations in a parallel processing environment, AJAA Paper No. 89-1668, 1989.

  11. T. Inamuro and B. Sturtevant, Numerical study of discrete-velocity gases, Phys. Fluids A 2: 2196–2203 (1990).

    Google Scholar 

  12. P. Michel and J. Schneider, A quadrature formula for the Boltzmann equation, SIAM J. Num. Anal. to appear.

  13. S. Mischler, Convergence of discrete velocities schemes for the Boltzmann equation, Arch. Rat. Mech. Anal., to appear.

  14. S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Preprint 1996.

  15. A. Palczewski, J. Schneider, and A. V. Bobylev, A consistency result for a discrete-velocity model of the Boltzmann equation, SIAM J. Num. Anal. 34:1865–1883 (1997).

    Google Scholar 

  16. F. Rogier and J. Schneider, A direct method for solving the Boltzmann equation, Transp. Theory Statist. Phys. 23:313–338 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palczewski, A., Schneider, J. Existence, Stability, and Convergence of Solutions of Discrete Velocity Models to the Boltzmann Equation. Journal of Statistical Physics 91, 307–326 (1998). https://doi.org/10.1023/A:1023000406921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023000406921

Navigation