Skip to main content
Log in

A Note on Cactus Trees: Variational vs. Recursive Approach

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this article we deal with the variational approach to cactus trees (Husimi trees) and the more common recursive approach, that are in principle equivalent for finite systems. We discuss in detail the conditions under which the two methods are equivalent also in the analysis of infinite (self-similar) cactus trees, usually investigated to the purpose of approximating ordinary lattice systems. Such issue is hardly ever considered in the literature. We show (on significant test models) that the phase diagram and the thermodynamic quantities computed by the variational method, when they deviates from the exact bulk properties of the cactus system, generally provide a better approximation to the behavior of a corresponding ordinary system. Generalizing a property proved by Kikuchi, we also show that the numerical algorithm usually employed to perform the free energy minimization in the variational approach is always convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. A. Lavis and G. M. Bell, Statistical Mechanics of Lattice Systems, Vol. 1 (Closed Form and Exact Solutions) (Springer-Verlag, Berlin/Heidelberg/New York, 1999).

    Google Scholar 

  2. T. Morita, Physica A 105:620(1981).

    Google Scholar 

  3. R. B. Griffiths and M. Kaufman, Phys. Rev. B 26:5022(1982).

    Google Scholar 

  4. P. D. Gujrati, Phys. Rev. Lett. 74:809(1995).

    Google Scholar 

  5. J. L. Monroe, J. Stat. Phys. 65:255(1991).

    Google Scholar 

  6. J. L. Monroe, J. Stat. Phys. 67:1185(1992).

    Google Scholar 

  7. J. L. Monroe, Physica A 206:218(1994).

    Google Scholar 

  8. J. L. Monroe, Physica A 256:217(1998).

    Google Scholar 

  9. N. S. Ananikian, R. G. Ghulghazaryan, and V. S. Izmailian, Int. J. Mod. Phys. B 12:2349(1998).

    Google Scholar 

  10. N. S. Ananikian et al., Phys. Lett. A 248:381(1998).

    Google Scholar 

  11. C. S. O. Yokoi, M. J. de Oliveira, and S. R. Salinas, Phys. Rev. Lett. 54:163(1985).

    Google Scholar 

  12. I. Ono, Prog. Theor. Phys. Supp. 87:102(1986).

    Google Scholar 

  13. P. Chandra and B. Doucot, J. Phys. A 27:1541(1994).

    Google Scholar 

  14. H. Rieger and T. R. Kirkpatrick, Phys. Rev. B 45:9772(1992).

    Google Scholar 

  15. T. Morita, J. Phys. A: Math. Gen. 9:169(1976).

    Google Scholar 

  16. J. F. Stilck and M. J. de Oliveira, Phys. Rev. A 42:5955(1990).

    Google Scholar 

  17. J. F. Stilck and J. C. Wheeler, Physica A 190:24(1992).

    Google Scholar 

  18. A. J. Banchio and P. Serra, Phys. Rev. E 51:2213(1995).

    Google Scholar 

  19. J. F. Stilck, K. D. Machado, and P. Serra, Phys. Rev. Lett. 76:2734(1996).

    Google Scholar 

  20. V. V. Papoyan and R. R. Scherbakov, J. Phys. A 28:6099(1995), V. V. Papoyan and R. R. Scherbakov Fractals 4:105 (1996).

    Google Scholar 

  21. F. Mejia-Lira, K. H. Bennemann, and J. L. Moran-Lopez, Phys. Rev. B 26:5398(1982).

    Google Scholar 

  22. M. F. Thorpe, D. Weaire, and R. Alben, Phys. Rev. B 7:3777(1973).

    Google Scholar 

  23. C. J. Thompson, Phys. Lett. A 47:23(1974).

    Google Scholar 

  24. D. M. Burley, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green (Eds.), (Academic Press, New York, 1972).

    Google Scholar 

  25. A. Pelizzola and M. Pretti, Phys. Rev. B 60:10134(1999).

    Google Scholar 

  26. J. L. Monroe, Phys. Rev. E 64:16126(2001).

    Google Scholar 

  27. J. A. de Miranda-Neto and F. Moraes, J. Phys. I France 2:1657(1992), J. A. de Miranda-Neto and F. Moraes, J. Phys. I France 3:29 (1993).

    Google Scholar 

  28. J. L. Monroe, Phys. Lett. A 188:80(1994).

    Google Scholar 

  29. R. Kikuchi, J. Chem. Phys. 60:1071(1974).

    Google Scholar 

  30. M. Kurata, R. Kikuchi, and E. Watari, J. Chem. Phys. 21:434(1953); C. Domb, Adv. Phys. 9:823 (1960).

    Google Scholar 

  31. G. An, J. Stat. Phys. 52:727(1988).

    Google Scholar 

  32. C. Gruber, A. Hintermann, and D. Merlini, Group Analysis of Classical Lattice Systems (Springer-Verlag, Berlin, 1977), p. 25.

    Google Scholar 

  33. B. D. Metcalf, Phys. Lett. A 45:1(1973).

    Google Scholar 

  34. P. Bak and J. von Boehm, Phys. Rev. B 21:5297(1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pretti, M. A Note on Cactus Trees: Variational vs. Recursive Approach. Journal of Statistical Physics 111, 993–1015 (2003). https://doi.org/10.1023/A:1022862618478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022862618478

Navigation