Skip to main content
Log in

Weak Laws with Random Indices for Arrays of Random Elements in Rademacher Type p Banach Spaces

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

For a sequence of constants {a n,n≥1}, an array of rowwise independent and stochastically dominated random elements { V nj, j≥1, n≥1} in a real separable Rademacher type p (1≤p≤2) Banach space, and a sequence of positive integer-valued random variables {T n, n≥1}, a general weak law of large numbers of the form \(\sum {_{j = 1}^{T_n } } a_j (V_{nj} - c_{nj} )/b_{[\alpha _n ]} \xrightarrow{P}0\) is established where {c nj, j≥1, n≥1}, α n → ∞, b n → ∞ are suitable sequences. Some related results are also presented. No assumption is made concerning the existence of expected values or absolute moments of the {V nj, j≥1, n≥1}. Illustrative examples include one wherein the strong law of large numbers fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adler, A., and Rosalsky, A. (1989). On the Chow-Robbins “fair” games problem. Bull. Inst. Math. Acad. Sinica 17, 211–227.

    Google Scholar 

  2. Adler, A., and Rosalsky, A. (1991). On the weak law of large numbers for normed weighted sums of i.i.d. random variables. Int. J. Math. Math. Sci. 14, 191–202.

    Google Scholar 

  3. Adler, A., and Rosalsky, A. (1995). An extension of the Hong-Park version of the Chow-Robbins theorem on sums of nonintegrable random variables. J. Korean Math. Soc. 32, 363–370.

    Google Scholar 

  4. Adler, A., Rosalsky, A., and Taylor, R. L. (1989). Strong laws of large numbers for weighted sums of random elements in normed linear spaces. Int. J. Math. Math. Sci. 12, 507–530.

    Google Scholar 

  5. Adler, A., Rosalsky, A., and Taylor, R. L. (1991). A weak law for normed weighted sums of random elements in Rademacher type p Banach spaces. J. Multiv. Anal. 37, 259–268.

    Google Scholar 

  6. Adler, A., Rosalsky, A., and Taylor, R. L. (1992). Some strong laws of large numbers for sums of random elements. Bull. Inst. Math. Acad. Sinica 20, 335–357.

    Google Scholar 

  7. Beck, A. (1963). On the strong law of large numbers. In Wright, F. B. (ed.), Ergodic Theory: Proceedings of an International Symposium Held at Tulane University, New Orleans, Louisiana, October 1961, Academic Press, New York, pp. 21–53.

    Google Scholar 

  8. Billingsley, P. (1995). Probability and Measure, Third Edition, John Wiley, New York.

    Google Scholar 

  9. Chow, Y. S., and Teicher, H. (1988). Probability Theory: Independence, Interchangeability, Martingales, Second Edition, Springer-Verlag, New York.

    Google Scholar 

  10. Doob, J. L. (1953). Stochastic Processes, John Wiley, New York.

    Google Scholar 

  11. Etemadi, N. (1985). On some classical results in probability theory. Sankhyā Ser. A 47, 215–221.

    Google Scholar 

  12. Etemadi, N. (1987). On sums of independent random vectors. Commun. Statist.-Theor. Meth. 16, 241–252.

    Google Scholar 

  13. Hardy, G. H., Littlewood, J. E., and Pólya, G. (1952). Inequalities, Second Edition, Cambridge University Press, Cambridge.

    Google Scholar 

  14. Hoffmann-Jørgensen, J., and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Prob. 4, 587–599.

    Google Scholar 

  15. Jain, N. C. (1976). Central limit theorem in a Banach space. In Beck, A. (ed.), Probability in Banach Spaces (Proceedings of the First International Conference on Probability in Banach Spaces, 20–26 July 1975, Oberwolfach), Lecture Notes in Mathematics, Vol. 526, Springer-Verlag, Berlin, pp. 113–130.

    Google Scholar 

  16. Loève, M. (1977). Probability Theory I, Fourth Edition, Springer-Verlag, New York.

    Google Scholar 

  17. Mikosch, T., and Norvaiša, R. (1986). On almost sure behavior of sums of independent Banach space valued random variables. Math. Nachr. 125, 217–231.

    Google Scholar 

  18. Mikosch, T., and Norvaiša, R. (1987). Strong laws of large numbers for fields of Banach space valued random variables. Prob. Th. Rel. Fields 74, 241–253.

    Google Scholar 

  19. Rao, M. M. (1984). Probability Theory with Applications, Academic Press, Orlando, Florida.

    Google Scholar 

  20. Scalora, F. S. (1961). Abstract martingale convergence theorems. Pacific J. Math. 11, 347–374.

    Google Scholar 

  21. Shiryayev, A. N. (1984). Probability, Springer-Verlag, New York.

    Google Scholar 

  22. Taylor, R. L. (1978). Stochastic Convergence of Weighted Sums of Random Elements in Linear Spaces, Lecture Notes in Mathematics, Vol. 672, Springer-Verlag, Berlin.

    Google Scholar 

  23. Wei, D., and Taylor, R. L. (1978). Convergence of weighted sums of tight random elements. J. Multiv. Anal. 8, 282–294.

    Google Scholar 

  24. Woyczyński, W. A. (1978). Geometry and martingales in Banach spaces-Part II: Independent increments. In Kuelbs, J. and Ney, P. (eds.), Probability on Banach Spaces, Advances in Probability and Related Topics, Vol. 4, Marcel Dekker, New York, pp. 267–517.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, A., Rosalsky, A. & Volodin, A.I. Weak Laws with Random Indices for Arrays of Random Elements in Rademacher Type p Banach Spaces. Journal of Theoretical Probability 10, 605–623 (1997). https://doi.org/10.1023/A:1022645526197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022645526197

Navigation