Skip to main content
Log in

Maximum Likelihood Estimation of Asymmetric Laplace Parameters

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Maximum likelihood estimators (MLE's) are presented for the parameters of a univariate asymmetric Laplace distribution for all possible situations related to known or unknown parameters. These estimators admit explicit form in all but two cases. In these exceptions effective algorithms for computing the estimators are provided. Asymptotic distributions of the estimators are given. The asymptotic normality and consistency of the MLE's for the scale and location parameters are derived directly via representations of the relevant random variables rather than from general sufficient conditions for asymptotic normality of the MLE's.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakrishnan, N. and Ambagaspitiya, R. S. (1994). On skewed-Laplace distributions, Report, McMaster University, Hamilton, Ontario, Canada.

    Google Scholar 

  • Balakrishnan, N. and Cohen, A. C. (1991). Order Statistics and Inference: Estimation Methods, Academic Press, San Diego.

    Google Scholar 

  • Fernández, C. and Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness, J. Amer. Statist. Assoc., 93, 359–371.

    Google Scholar 

  • Hartley, M. J and Revankar, N. S. (1974). On the estimation of the Pareto law from underreported data, J. Econometrics, 2, 327–341.

    Google Scholar 

  • Hinkley, D. V. and Revankar, N. S. (1977). Estimation of the Pareto law from underreported data, J. of Econometrics, 5, 1–11.

    Google Scholar 

  • Holla, M. S. and Bhattacharya, S. K. (1968). On a compound Gaussian distribution, Ann. Inst. Statist. Math., 20, 331–336.

    Google Scholar 

  • Kotz, S., Kozubowski, T. J. and Podgórski, K. (2001). The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance, Birkhäuser, Boston.

    Google Scholar 

  • Kozubowski, T. J. and Podgórski, K. (1999). A class of asymmetric distributions, Actuarial Research Clearing House, 1, 113–134.

    Google Scholar 

  • Kozubowski, T. J. and Podgórski, K. (2000). Asymmetric Laplace distribution, Math. Sci., 25, 37–46.

    Google Scholar 

  • Kozubowski, T. J. and Podgórski, K. (2001). Asymmetric Laplace laws and modeling financial data, Math. Comput. Modelling, 34, 1003–1021.

    Google Scholar 

  • Levin, A. and Tchernitser, A. (1999). Multifactor gamma stochastic variance Value-at-Risk model, Presentation at the Conference Applications of Heavy Tailed Distributions in Economics, Engineering, and Statistics, American University, Washington, D.C., June 3–5, 1999.

  • Lingappaiah, G. S. (1988). On two-piece double exponential distribution, J. Korean Statist. Soc., 17(1), 46–55.

    Google Scholar 

  • Madan, D. B., Carr, P. and Chang, E. C. (1998). The variance gamma process and option pricing, European Finance Review, 2, 74–105.

    Google Scholar 

  • McGill, W. J. (1962). Random fluctuations of response rate, Psychometrika, 27, 3–17.

    Google Scholar 

  • Poiraud-Casanova, S. and Thomas-Agnan, C. (2000). About monotone regression quantiles, Statist. Probab. Lett., 48, 101–104.

    Google Scholar 

References

  • Aitkin, M., Anderson, D., Francis, B. and Hinde, J. (1990). Statistical Modelling in GLIM, Clarendon Press, Oxford.

    Google Scholar 

  • Böhning, D. (1994). A note on a test for Poisson overdispersion, Biometrika 81, 418–419.

    Google Scholar 

  • Böhning, D. (2000). Computer-Assisted Analysis of Mixtures and Applications. Meta-Analysis, Disease Mapping, and Others, Chapman & Hall / CRC, Boca Raton.

    Google Scholar 

  • Breslow, N. E. (1984). Extra-Poisson variation in log-linear models, Applied Statistics, 33, 38–44.

    Google Scholar 

  • Clayton, D. and Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping, Biometrics, 43, 671–681.

    Google Scholar 

  • Collet, D. (1991). Modelling Binary Data, Chapman & Hall / CRC, Boca Raton.

    Google Scholar 

  • Haight, F. A. (1967). The Handbook of the Poisson Distribution, Wiley, New York.

    Google Scholar 

  • Lawson, A., Biggeri, A., Böhning, D., Lesaffre, E., Viel, J.-F. and Bertollini, R. (1999). Disease Mapping and Risk Assessment for Public Health, Wiley, New York.

    Google Scholar 

  • Marshall, R. J. (1991). Mapping disease and mortality rates using empirical Bayes estimators, Applied Statistics, 40, 283–294.

    Google Scholar 

  • Martuzzi, M. and Elliot, P. (1996). Empirical Bayes estimation of small area prevalence of non-rare conditions, Statistics in Medicine, 15, 1867–1873.

    Google Scholar 

  • Martuzzi, M. and Hills, M. (1995). Estimating the degree of heterogeneity between event rates using likelihood, American Journal of Epidemiology, 141, 369–374.

    Google Scholar 

  • Pendergast, J. F., Gange, S. J., Newton, M. A., Lindstrom, M. J., Palta, M. and Fisher, M. R. (1996). A survey of methods for analyzing clustered binary response data, International Statistical Review, 64, 89–118.

    Google Scholar 

  • Pocock, S. J., Cook, D. G. and Beresford, S. A. A. (1981). Regression of area mortality rates on explanatory variables: What weighting is appropriate?, Applied Statistics, 30, 286–295.

    Google Scholar 

  • Williams, D. A. (1982). Extra-binomial variation in logistic linear models, Applied Statistics, 31, 144–148.

    Google Scholar 

References

  • Bai, J., Jakeman, A. J. and McAleer, M. (1991). A new approach to maximum likelihood estimation of the three-parameter gamma and Weibull distributions, Austral. J. Statist., 33, 397–410.

    Google Scholar 

  • Bowman, K. O. and Shenton, L. R. (1988). Properties of estimators for the gamma distribution, Marcel Dekker, New York.

    Google Scholar 

  • Bowman, K. O., Shenton, L. R. and Lam, H. K. (1987). Simulation and estimation problems associated with the three-parameter gamma distribution, Comm. Statist. Simulation Comput., 16, 1147–1188.

    Google Scholar 

  • Cohen, A. C. and Norgaard, N. J. (1977). Progressively censored sampling in the three-parameter gamma distribution, Technometrics, 19, 333–340.

    Google Scholar 

  • Cohen, A. C. and Whitten, B. J. (1982). Modified moment and maximum likelihood estimators for parameters of the three-parameter gamma distribution, Comm. Statist. Simulation. Comput., 11, 197–216.

    Google Scholar 

  • Greenwood, J. A. and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood, Technometrics, 2, 55–65.

    Google Scholar 

  • Harter, H. L. and Moore, A. H. (1965). Maximum-likelihood estimation of the parameters of the gamma and Weibull populations from complete and from censored samples, Technometrics, 7, 639–643.

    Google Scholar 

  • Hu, C. Y. (1990). On signal to noise ratio statistics, Ph. D. Thesis, Institute of Statistics, National Tsing Hua University, Taiwan.

    Google Scholar 

  • Hwang, T. Y. (2000). On the inference of parameters of gamma distribution, Tech. Report, 89–2118-M-007–014, National Science Council, Taiwan.

    Google Scholar 

  • Hwang, T. Y. and Hu, C. Y. (1999). On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Ann. Inst. Statist. Math., 51, 749–753.

    Google Scholar 

  • Hwang, T. Y. and Hu, C. Y. (2000). On some characterizations of population distribution, Taiwanese J. Math., 4(3), 427–437.

    Google Scholar 

  • Hwang, T. Y. and Lin, Y. K. (2000). On the distribution of the sample heterogeneity of molecular polymer, Tamsui Oxford Journal of Mathematical Sciences, 16(2), 133–149.

    Google Scholar 

  • Johnson, N. J. and Kotz, S. (1970). Continuous Univariate Distributions-1, Wiley, New York.

    Google Scholar 

  • Thom, H. C. S. (1958). A note on the gamma distribution, Washington, Monthly Weather Review, 86(4), 117–121, Office of Climatology, U. S. Weather, Washington D. C.

    Google Scholar 

References

  • Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference under Order Restrictions, Wiley, New York.

    Google Scholar 

  • Berger, J. (1980). Improving on inadmissible estimators in continuous exponential families with applications to simultaneous estimation of gamma scale parameters, Ann. Statist., 8, 545–571.

    Google Scholar 

  • Fernández, M. A., Rueda, C. and Salvador, B. (1999). The loss of efficiency estimating linear functions under restrictions, Scand. J. Statist., 26, 579–592.

    Google Scholar 

  • Fernández, M. A., Rueda, C. and Salvador, B. (2000). Parameter estimation under orthant restrictions, Canad. J. Statist., 28, 171–181.

    Google Scholar 

  • Hwang, J. T. G. and Peddada, S. D. (1994). Confidence interval estimation subject to order restrictions, Ann. Statist., 22, 67–93.

    Google Scholar 

  • Kelly, R. E. (1989). Stochastic reduction of loss in estimating normal means by isotonic regression, Ann. Statist., 17, 937–940.

    Google Scholar 

  • Kaur, A. and Singh, H. (1991). On the estimation of ordered means of two exponential populations, Ann. Inst. Statist. Math., 43, 347–356.

    Google Scholar 

  • Kubokawa, T. and Saleh, A. K. MD. E. (1994). Estimation of location and scale parameters under order restrictions, J. Statist. Res., 28, 41–51.

    Google Scholar 

  • Kushary, D. and Cohen, A. (1989). Estimating ordered location and scale parameters, Statist. Decisions, 7, 201–213.

    Google Scholar 

  • Kushary, D. and Cohen, A. (1991). Estimation of ordered Poisson parameters, Sankhyā Ser. A, 53, 334–356.

    Google Scholar 

  • Lee, C. I. C. (1981). The quadratic loss of isotonic regression under normality, Ann. Statist., 9, 686–688.

    Google Scholar 

  • Lee, C. I. C. (1988). The quadratic loss of order restricted estimators for several treatment means and a control mean, Ann. Statist., 16, 751–758.

    Google Scholar 

  • Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference, Wiley, New York.

    Google Scholar 

  • Rueda, C. and Salvador, B. (1995). Reduction of risk using restricted estimators, Comm. Statist. Theory Methods, 24(4), 1011–1022.

    Google Scholar 

  • Shinozaki, N. and Chang, Y.-T. (1999). A comparison of maximum likelihood and best unbiased estimators in the estimation of linear combinations of positive normal means, Statist. Decisions, 17, 125–136.

    Google Scholar 

References

  • Chuiv, N. and Sinha, B. K. (1998). On some aspects of ranked set sampling in parameter estimation, Handbook of Statistics 17 (eds. N. Balakrishnan and C. R. Rao), 337–377, Elsevier, North-Holland, Amsterdam.

    Google Scholar 

  • David, H. A. (1973). Concomitants of order statistics, Bulletin of the International Statistical Institute, 45(1), 295–300.

    Google Scholar 

  • Kackar, R. N. and Harville, D. A. (1984). Approximations for standard errors of fixed and random effects in mixed linear models, J. Amer. Statist. Assoc., 79, 853–862.

    Google Scholar 

  • McIntyre, G. A. (1952). A method of unbiased selective sampling using ranked sets, Australian Journal of Agricultural Research, 3, 385–390.

    Google Scholar 

  • Muirhead, R. J.(1982). Aspects of Multivariate Statistical Theory, Wiley, New York.

    Google Scholar 

  • Patil, G. P., Sinha, A. K. and Taillie, C. (1994). Ranked set sampling, Handbook of Statistics 12 (eds. G. P. Patil and C. R. Rao), 167–200, Elsevier, North-Holland, Amsterdam.

    Google Scholar 

  • Stokes, S. L. (1977). Ranked set sampling with concomitant variables, Comm. Statist. Theory Methods, 6, 1207–1211.

    Google Scholar 

  • Yu, P. L. H. and Lam, K. (1997). Regression estimator in ranked set sampling, Biometrics, 53, 1070–1080.

    Google Scholar 

  • Yu, P. L. H., Sun, Y. and Sinha, B. K. (1999). On exact confidence intervals for the common mean of several normal populations, J. Statist. Plann. Inference, 81(2), 263–277.

    Google Scholar 

References

  • Devroye, L. and Krzyżak, A. (1989). An equivalence theorem for L 1 convergence of the kernel regression estimate, J. Statist. Plann. Inference, 23, 71–82.

    Google Scholar 

  • Devroye, L. P. and Wagner, T. J. (1980). Distribution-free consistency results in nonparametric discrimination and regression function estimation, Ann. Statist., 8, 231–239.

    Google Scholar 

  • Devroye, L., Györfi, L., Krzyżak, A. and Lugosi, G. (1994). On the strong universal consistency of nearest neighbor regression function estimates, Ann. Statist., 22, 1371–1385.

    Google Scholar 

  • Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition, Springer, New York.

    Google Scholar 

  • Dudley, R. (1978). Central limit theorems for empirical measures, Ann. Probab., 6, 899–929.

    Google Scholar 

  • Eubank, R. L. (1988). Spline Smoothing and Nonparametric Regression, Marcel Dekker, New York.

    Google Scholar 

  • Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman & Hall, London.

    Google Scholar 

  • Györfi, L. (1991). Universal consistency of a regression estimate for unbounded regression functions, Nonparametric Functional Estimation and Related Topics (ed. G. Roussas), NATO ASI Series, 329–338, Kluwer, Dordrecht.

    Google Scholar 

  • Györfi, L. and Walk, H. (1996). On the strong universal consistency of a series type regression estimate, Math. Methods Statist., 5, 332–342.

    Google Scholar 

  • Györfi, L. and Walk, H. (1997). On the strong universal consistency of a recursive regression estimate by Pál Révész, Statist. Probab. Lett., 31, 177–183.

    Google Scholar 

  • Györfi, L., Kohler, M. and Walk, H. (1998). Weak and strong universal consistency of semi-recursive partitioning and kernel regression estimates, Statist. Decisions, 16, 1–18.

    Google Scholar 

  • Härdle, H. (1990). Applied Nonparametric Regression, Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and other learning applications, Inform. and Comput., 100, 78–150.

    Google Scholar 

  • Kohler, M. (1997). On the universal consistency of a least squares spline regression estimator, Math. Methods Statistics, 6, 349–364.

    Google Scholar 

  • Kohler, M. (1999). Universally consistent regression function estimation using hierarchical B-splines, J. Multivariate Anal., 67, 138–164.

    Google Scholar 

  • Kohler, M. and Krzyżak, A. (2001). Nonparametric regression estimation using penalized least squares, in IEEE Transactions on Information Theory, 47, 3054–3058.

    Google Scholar 

  • Korostelev, A. P. and Tsybakov, A. B. (1993). Minimax Theory of Image ReConstruction, Springer, Berlin.

    Google Scholar 

  • Krzyżak, A., Linder, T. and Lugosi, G. (1996). Nonparametric estimation and classification using radial basis function nets and empirical risk minimization, IEEE Transactions on Neural Networks, 7, 475–487.

    Google Scholar 

  • Lugosi, G. and Zeger, K. (1995). Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory, 41, 677–687.

    Google Scholar 

  • Nobel, A. (1996). Histogram regression estimation using data-dependent partitions, Ann. Statist., 24, 1084–1105.

    Google Scholar 

  • Spiegelman, C. and Sacks, J. (1980). Consistent window estimation in nonparametric regression, Ann. Statist., 8, 240–246.

    Google Scholar 

  • Stone, C. J. (1977). Consistent nonparametric regression, Ann. Statist., 5, 595–645.

    Google Scholar 

  • Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression, Ann. Statist., 10, 1040–1053.

    Google Scholar 

  • Wahba, G. (1990). Spline Models for Observational Data, SIAM, Philadelphia, Pennsylvania.

    Google Scholar 

  • Walk, H. (2002). Almost sure convergence properties of Nadaraya-Watson regression estimates, Essays on Uncertainty-S. Yakowitz Memorial Volume (eds. M. Dror, P. L'Ecuyer and F. Szidarovszky), 201–223, Kluwer, Dordrecht.

    Google Scholar 

References

  • Andrews, D. F. and Herzberg, A. M. (1985). Data: A Collection of Problems from Many Fields for the Student and Research Worker, Springer, New York.

    Google Scholar 

  • Beran, R. (1996). Confidence sets centered at C p estimators, Ann. Inst. Statist. Math., 48, 1–15.

    Google Scholar 

  • Beran, R. (2000). REACT scatterplot smoothers: Superefficiency through basis economy, J. Amer. Statist. Assoc., 63, 155–171.

    Google Scholar 

  • Beran, R. and Dümbgen, L. (1998). Modulation of estimators and confidence sets, Ann. Statist., 26, 1826–1856.

    Google Scholar 

  • Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models (with discussion), Ann. Statist., 17, 453–555.

    Google Scholar 

  • Chu, C.-K. and Marron, J. S. (1991). Choosing a kernel regression estimator, Statist. Sci., 6, 404–436.

    Google Scholar 

  • Heckman, N. E. and Ramsay, J. O. (2000). Penalized regression with model-based penalties, Canad. J. Statist., 28, 241–258.

    Google Scholar 

  • Mallows, C. L. (1973). Some comments on C p, Technometrics, 15, 661–676.

    Google Scholar 

  • Pinsker, M. S. (1980). Optimal filtration of square-integrable signals in Gaussian noise, Problems Inform. Transmission, 16, 120–133.

    Google Scholar 

  • Rice, J. (1984). Bandwidth choice for nonparametric regression, Ann. Statist., 12, 1215–1230.

    Google Scholar 

  • Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference, Wiley, New York.

    Google Scholar 

  • Simonoff, J. S. (1996). Smoothing Methods in Statistics, Springer, New York.

    Google Scholar 

  • Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, Proc. Third Berkeley Symp. on Math. Statist. Prob., Vol. 1 (ed. J. Neyman), 197–206, University of California Press, Berkeley.

    Google Scholar 

  • Stein, C. (1981). Estimation of the mean of a multivariate normal distribution, Ann. Statist., 9, 1135–1151.

    Google Scholar 

  • Venables, W. N. and Ripley, B. D. (1999). Modern Applied Statistics with S-PLUS, 3rd ed., Springer, New York.

    Google Scholar 

References

  • Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics, Chapman and Hall, London.

    Google Scholar 

  • Bartlett, M. S. (1937). Properties of sufficiency and statistical tests, Proc. Royal Soc. London Ser. A, 160, 268–282.

    Google Scholar 

  • Bickel, P. J. and Ghosh, J. K. (1990). A decomposition for the likelihood ratio statistic and the Bartlett correction—A Bayesian argument, Ann. Statist., 18, 1070–1090.

    Google Scholar 

  • Cordeiro, G. M. (1987). On the corrections to the likelihood ratio statistics, Biometrika, 74, 265–274.

    Google Scholar 

  • Harris, P. (1986). A note on Bartlett adjustments to likelihood ratio tests, Biometrika, 73, 735–737.

    Google Scholar 

  • Hayakawa, T. (1977). The likelihood ratio criterion and the asymptotic expansion of its distribution, Ann. Inst. Statist. Math., 29, 359–378 (Correction: ibid. (1987). 39, P. 681).

    Google Scholar 

  • Hayakawa, T. (1993). Test of homogeneity of parameters, Statistical Science and Data Analysis (eds. K. Matusita, M. L. Puri and T. Hayakawa), 337–343, VSP Zeist.

    Google Scholar 

  • Hayakawa, T. (1994). Test of homogeneity of multiple parameters, J. Statist. Plann. Inference, 38, 351–357.

    Google Scholar 

  • Hayakawa, T. (2001). Rao's statistic for homogeneity of multiple parameters, J. Statist. Plann. Inference, Special Issue for Rao's Score Statistic (eds. A. K. Bera and R. Mukerjee), 97, 101–111.

  • Hayakawa, T. and Doi, M. (1999). Modified Wald statistic for homogeneity of multiple parameters, Comm. Statist. Theory. Methods, 28, 755–771.

    Google Scholar 

  • Lawley, D. N. (1956). A general method of approximating to the distribution of likelihood ratio criteria, Biometrika, 43, 295–303.

    Google Scholar 

  • Ogawa, J. (1949). On the independence of bilinear form and quadratic forms of a random sample from a normal population, Ann. Inst. Statist. Math., 1, 83–108.

    Google Scholar 

  • Takemura, A. and Kuriki, S. (1996). A proof of independent Bartlett correctability of nested likelihood ratio tests, Ann. Inst. Statist. Math., 48, 603–620.

    Google Scholar 

References

  • Alling, D. W. (1963). Early decision in the Wilcoxon two-sample test, J. Amer. Statist. Assoc., 58, 713–720.

    Google Scholar 

  • Babu, G. J. and Rao, C. R. (1988). Joint asymptotic distribution of marginal quantile functions in samples from a multivariate population, J. Multivariate Anal., 27, 15–23.

    Google Scholar 

  • Billingsley, P. (1986). Probability and Measure, 2nd ed., Wiley, New York.

    Google Scholar 

  • Brookmeyer, R. and Crowley, J. (1982). A k-sample median test for censored data, J. Amer. Statist. Assoc., 77, 433–440.

    Google Scholar 

  • Chatterjee, S. K. and Sen, P. K. (1964). Non-parametric tests for the bivariate two-sample location problem, Calcutta Statist. Assoc. Bull., 13, 18–58.

    Google Scholar 

  • Cheng, K. F. (1984). On almost sure representations for quantiles of the product-limit estimator with applications, Sankhyā, Ser. A, 46, 426–443.

    Google Scholar 

  • Gastwirth, J. L. (1968). The first-median test: A two-sided version of the control median test, J. Amer. Statist. Assoc., 63, 692–706.

    Google Scholar 

  • Gastwirth, J. L. and Wang, J. L. (1988). Control percentile test procedures for censored data, J. Statist. Plann. Inference, 18, 267–276.

    Google Scholar 

  • Hettmansperger, T. P. (1973). A large sample conservative test for location with unknown scale parameters, J. Amer. Statist. Assoc., 68, 466–468.

    Google Scholar 

  • Hettmansperger, T. P. (1984). Statistical Inference Based on Ranks, Wiley, New York.

    Google Scholar 

  • Lo, S. H. and Singh, K. (1985). The product-limit estimator and the bootstrap: Some asymptotic representations, Probab. Theory Related Fields, 71, 455–465.

    Google Scholar 

  • Mathisen, H. C. (1943). A method of testing the hypothesis that two samples are from the same population, Ann. Math. Statist., 14, 188–194.

    Google Scholar 

  • Mood, A. M. (1950). Introduction to the Theory of Statistics, McGraw-Hill, New York.

    Google Scholar 

  • Park, H. I. and Desu, M. M. (1998). Multivariate control median test for right censored data, Comm. Statist. Theory Methods, 27(8), 1923–1935.

    Google Scholar 

  • Park, H. I. and Desu, M. M. (1999). A multivariate control median test, J. Statist. Plann. Inference, 79, 123–139.

    Google Scholar 

  • Puri, M. L. and Sen, P. K. (1985). Nonparametric Methods in General Linear Models, Wiley, New York.

    Google Scholar 

  • Randles, H. R. and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics, Wiley, New York.

    Google Scholar 

  • Wei, L. J. and Lachin, J. M. (1984). Two-sample asymptotically distribution-free tests for incomplete multivariate observations, J. Amer. Statist. Assoc., 79, 653–661.

    Google Scholar 

References

  • Dette, H. (1998). Some applications of canonical moments in Fourier regression models, New Developments and Applications in Experimental Design (eds. N. Flournoy, W. F. Rosenberger and W. K. Wong), IMS Lecture Notes Monogr. Ser., 34, 175–185, Hayward, California.

  • Dette, H. and Haller, G. (1998). Optimal designs for the identification of the order of a Fourier regression, Ann. Statist., 26, 1496–1521.

    Google Scholar 

  • Dette, H. and Melas, V. B. (2003). Optimal designs for estimating individual coefficients in Fourier regression models, Ann. Statist. (to appear), http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm.

  • Dette, H. Melas, V. B. and Pepelyshev, A. (2002). Optimal designs for estimating individual coefficients—A functional approach, J. Statist. Plann. Inference (to appear), http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm.

  • Fedorov, V. V. (1972). Theory of Optimal Experiments, Academic Press, New York.

    Google Scholar 

  • Graybill, F. A. (1976). Theory and Application of the Linear Model, Wadsworth, Belmont, California.

  • Gunning, R. C. and Rossi, H. (1965). Analytical Functions of Several Complex Variables, Prentice Hall, New York.

    Google Scholar 

  • Hill, P. D. H. (1978). A note on the equivalence of D-optimal design measures for three rival linear models, Biometrika, 65, 666–667.

    Google Scholar 

  • Hoel, P. (1965). Minimax design in two-dimensional regression, Ann. Math. Statist., 36, 1097–1106.

    Google Scholar 

  • Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience, New York.

    Google Scholar 

  • Kiefer, J. C. (1974). General equivalence theory for optimum designs (approximate theory), Ann. Statist., 2, 849–879.

    Google Scholar 

  • Kitsos, C. P., Titterington, D. M. and Torsney, B. (1988). An optimal design problem in rhythmometry, Biometrics, 44, 657–671.

    Google Scholar 

  • Lau, T. S. and Studden, W. J. (1985). Optimal designs for trigonometric and polynomial regression, Ann. Statist., 13, 383–394.

    Google Scholar 

  • Mardia, K. (1972). The statistics of directional data, Academic Press, New York.

    Google Scholar 

  • Melas, V. B. (1978). Optimal designs for exponential regression, Mathematische Operations for schung und Statistik, Series Statistics, 9, 45–59.

    Google Scholar 

  • Pukelsheim, F. (1993). Optimal Design of Experiments, Wiley, New York.

    Google Scholar 

  • Riccomagno, E., Schwabe, R. and Wynn, H. P. (1997). Lattice-based D-optimum design for Fourier regression, Ann. Statist., 25, 2313–2327.

    Google Scholar 

  • Rivlin, T. J. (1974). Chebyshev Polynomials, Wiley, New York.

    Google Scholar 

  • Silvey, S. D. (1980). Optimal Design, Chapman and Hall, London.

    Google Scholar 

  • Szegö, G. (1975). Orthogonal polynomials, Amer. Math. Soc. Colloqu. Publ., 23, Providence, Rhode Island.

  • Wu, H. (2002). Optimal designs for first order trigonometric regression on a partial circle, Statistica Sinica, 12, 917–930.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kotz, S., Kozubowski, T.J. & Podgórski, K. Maximum Likelihood Estimation of Asymmetric Laplace Parameters. Annals of the Institute of Statistical Mathematics 54, 816–826 (2002). https://doi.org/10.1023/A:1022467519537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022467519537

Navigation