Skip to main content
Log in

Goodness-of-Fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper considers two flexible classes of omnibus goodness-of-fit tests for the inverse Gaussian distribution. The test statistics are weighted integrals over the squared modulus of some measure of deviation of the empirical distribution of given data from the family of inverse Gaussian laws, expressed by means of the empirical Laplace transform. Both classes of statistics are connected to the first nonzero component of Neyman's smooth test for the inverse Gaussian distribution. The tests, when implemented via the parametric bootstrap, maintain a nominal level of significance very closely. A large-scale simulation study shows that the new tests compare favorably with classical goodness-of-fit tests for the inverse Gaussian distribution, based on the empirical distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baringhaus, L., Gürtler, N. and Henze, N. (2000). Weighted integral test statistics and components of smooth tests of fit, Australian & New Zealand Journal of Statistics, 42(2), 179–192.

    Google Scholar 

  • Baringhaus, L. and Henze, N. (1991). A class of consistent tests for exponentiality based on the empirical Laplace transform, Ann. Inst. Statist. Math., 43, 551–564.

    Google Scholar 

  • Baringhaus, L. and Henze, N. (1992). A goodness of fit test for the Poisson distribution based on the empirical generating function, Statist. Prob. Lett., 13, 269–274.

    Google Scholar 

  • Bhattacharyya, G. and Fries, A. (1982). Fatigue failure models—Birnbaum-Saunders vs. inverse Gaussian, IEEE Trans. Reliab., R-31, 439–441.

    Google Scholar 

  • Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

    Google Scholar 

  • Chhikara, R. Folks, J. (1977). The inverse Gaussian distribution as a lifetime model, Technometrics, 19, 461–468.

    Google Scholar 

  • Chhikara, R. and Folks, J. (1989). The Inverse Gaussian Distribution, Theory, Methodology and Applications, Marcel, New York.

    Google Scholar 

  • Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics, VOL I, Interscience, New York.

    Google Scholar 

  • Edgeman, R., Scott, R. and Pavur, R. (1988). A modified Kolmogorov-Smirnov test for the inverse Gaussian density with unknown parameters, Comm. Statist. Simulation Comput., 17, 1203–1212.

    Google Scholar 

  • Epps, T. (1995). A test of fit for lattice distributions, Comm. Statist. Theory Methods, 24(6), 1455–1479.

    Google Scholar 

  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., Wiley, New York.

    Google Scholar 

  • Gunes, H., Dietz, D., Auclair, P. and Moore, A. (1997). Modified goodness-of-fit tests for the inverse Gaussian distribution, Comput. Statist. Data Anal., 24, 63–77.

    Google Scholar 

  • Gürtler, N. and Henze, N. (2000). Recent and classical goodness-of-fit tests for the Poisson distribution, J. Statist. Plann. Inference, 90, 207–225.

    Google Scholar 

  • Henze, N. (1993). A new flexible class of omnibus tests for exponentiality, Comm. Statist. Theory Methods, 22, 115–133.

    Google Scholar 

  • Henze, N. (1996). Empirical-distribution-function goodness-of-fit tests for discrete models, Canad. J. Statist., 24(1), 81–93.

    Google Scholar 

  • Henze, N. and Meintanis, S. (2000). Tests of fit for exponentiality based on the empirical Laplace transform, Statistics (to appear).

  • Henze, N. and Wagner, T. (1997). A new approach to the BHEP tests for multivariate normality, J. Multivariate Anal., 62(1), 1–23.

    Google Scholar 

  • Hougaard, P. (1984). Life table methods for heterogeneous populations: Distributions describing the heterogeneity, Biometrika, 71, 75–83.

    Google Scholar 

  • Klar, B. (2000). Diagnostic smooth tests of fit, Metrika, 52, 237–252.

    Google Scholar 

  • Kundu, S., Majumdar, S. and Mukherjee, K. (2000). Central limit theorems revisited, Statist. Probab. Lett., 47, 265–275.

    Google Scholar 

  • Mergel, V. (1999). Test of goodness of fit for the inverse-gaussian distribution, Math. Commun., 4, 191–195.

    Google Scholar 

  • Michael, J., Schucancy, W. and Haas, R. (1976). Generating random variates using transformations with multiple roots, Amer. Statist., 30(2), 88–90.

    Google Scholar 

  • Nakamura, M. and Pérez-Abreu, V. (1993). Use of an empirical probability generating function for testing a Poisson model, Canad. J. Statist., 21(2), 149–156.

    Google Scholar 

  • O'Reilly, F. and Rueda, R. (1992). Goodness of fit for the inverse Gaussian distribution, Canad. J. Statist., 20, 387–397.

    Google Scholar 

  • Padgett, W. and Tsoi, S. (1986). Prediction intervals for future observations from the inverse Gaussian distribution, IEEE Trans. Reliab., R35, 406–408.

    Google Scholar 

  • Pavur, R., Edgeman, R. and Scott, R. (1992). Quadratic statistics for the goodness-of-fit test of the inverse Gaussian distribution, IEEE Trans. Reliab., 41, 118–123.

    Google Scholar 

  • Rueda, R. and O'Reilly, F. (1999). Tests of fit for discrete distributions based on the probability generating function, Commun. Statist. Simulation Comput, 28(1), 259–274.

    Google Scholar 

  • Seshadri, V. (1993). The Inverse Gaussian Distribution—A Case Study in Exponential Families, Clarendon Press, Oxford.

    Google Scholar 

  • Seshadri, V. (1999). The Inverse Gaussian Distribution—Statistical Theory and Applications, Springer, New York.

    Google Scholar 

  • Stute, W., Manteiga, W. and Quindimil, M. (1993). Bootstrap based goodness-of-fit tests, Metrika, 40, 243–256.

    Google Scholar 

  • Widder, D. (1959). The Laplace Transform, 5th ed., Princeton University Press, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Henze, N., Klar, B. Goodness-of-Fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform. Annals of the Institute of Statistical Mathematics 54, 425–444 (2002). https://doi.org/10.1023/A:1022442506681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022442506681

Navigation