Skip to main content
Log in

Density Deconvolution of Different Conditional Distributions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Recently, a new technique to circumvent the ill-posedness of the deconvolution problem has been suggested. This technique is based on what is known as multi-channel convolution system. In this paper, we modify and develop this technique in order to adapt it for statistical use. We then apply it to the problem of estimation of deconvolution density in the case of different conditional densities. This method enables us to combine equations efficiently for any set of conditional densities and to construct estimators in cases where the characteristic functions of the conditional distributions vanish at some points, as it happens in the case of uniform and triangular distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich, F. and Silverman, B. W. (1998). Wavelet decomposition approaches to statistical inverse problems, Biometrika, 85, 115–129.

    Google Scholar 

  • Berenstein, C. A. and Gay, R. (1991). Complex Analysis: An Introduction, Springer, New York.

    Google Scholar 

  • Berenstein, C. A. and Yger, A. (1989). Analytic Bezout identities, Adv. Math., 10, 51–74.

    Google Scholar 

  • Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc., 83, 1184–1186.

    Google Scholar 

  • Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models, Chapman & Hall, London.

    Google Scholar 

  • Casey, S. D. and Walnut, D. F. (1994). Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms, SIAM Rev., 36, 537–577.

    Google Scholar 

  • Desouza, C. M. (1991). An empirical Bayes formulation of cohort models in cancer epidemiology, Statistics in Medicine, 10, 1241–1256.

    Google Scholar 

  • Devroye, L. (1989). Consistent deconvolution in density estimation, Canad. J. Statist., 17, 235–239.

    Google Scholar 

  • Diggle, P. J. and Hall, P. (1993). A Fourier approach to nonparametric deconvolution of a density estimate, J. Roy. Statist. Soc. Ser. B, 55, 523–531.

    Google Scholar 

  • Donoho, D. (1995). Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition, Appl. Comput. Harmon. Anal., 2, 101–126.

    Google Scholar 

  • Efromovich, S. (1997). Density estimation for the case of supersmooth measurement error, J. Amer. Statist. Assoc., 92, 526–535.

    Google Scholar 

  • Erdélyi, A. (1954). Tables of Integral Transforms, McGraw-Hill, New York.

    Google Scholar 

  • Fan, J. (1991a). On the optimal rates of convergence for nonparametric deconvolution problem, Ann. Statist., 19, 1257–1272.

    Google Scholar 

  • Fan, J. (1991b). Asymptotic normality for deconvolution kernel density estimators, Sankhyā Ser. A, 53, 97–110.

    Google Scholar 

  • Fan, J. (1991c). Global behavior of deconvolution kernel estimates, Statist. Sinica, 1, 541–551.

    Google Scholar 

  • Fan, J. (1992). Deconvolution with supersmooth distributions, Canad. J. Statist., 20, 155–169.

    Google Scholar 

  • Fan, J. (1993). Adaptively local one-dimensional subproblems with application to a deconvolution problem, Ann. Statist., 21, 600–610.

    Google Scholar 

  • Hörmander, L. (1967). Generators for some rings of analytic functions, Bull. Amer. Math. Soc., 73, 943–949.

    Google Scholar 

  • Liu, M. C. and Taylor, R. L. (1989). A consistent nonparametric density estimator for the deconvolution problem, Canad. J. Statist., 17, 427–438.

    Google Scholar 

  • Louis, T. A. (1991). Using empirical Bayes methods in biopharmaceutical research, Statistics in Medicine, 10, 811–827.

    Google Scholar 

  • Masry, E. (1991). Multivariate probability density deconvolution for stationary random processes, IEEE Trans. Inform. Theory, 37, 1105–1115.

    Google Scholar 

  • Masry, E. (1993a). Strong consistency and rates for deconvolution of multivariate densities of stationary processes, Stochastic Process. Appl., 47, 53–74.

    Google Scholar 

  • Masry, E. (1993b). Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes, J. Multivariate Anal., 44, 47–68.

    Google Scholar 

  • Pensky, M. and Singh, R. S. (1994). Optimal estimation of prior densities of multidimensional location and scale parameters, Tech. Report, Statistical Series 1994–275, Department of Mathematics and Statistics, University of Guelph, Canada.

    Google Scholar 

  • Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist., 27, 2033–2053.

    Google Scholar 

  • Piterbarg, V. and Pensky, M. (1993). On asymptotic distribution of integrated squared error of an estimate of a component of a convolution, Math. Methods Statist., 2, 30–41.

    Google Scholar 

  • Stefanski, L. and Carroll, R. J. (1990). Deconvoluting kernel density estimators, Statistics, 21, 169–184.

    Google Scholar 

  • Taylor, R. L. and Zhang, H. M. (1990). On a strongly consistent non-parametric density estimator for deconvolution problem, Comm. Statist. Theory Methods, 19, 3325–3342.

    Google Scholar 

  • Walter, G. G. (1994). Wavelets and Other Orthogonal Systems with Applications, CRC Press, Boca Raton.

    Google Scholar 

  • Walter, G. G. (1999). Density estimation in the presence of noise, Statist. Probab. Lett., 41, 237–246.

    Google Scholar 

  • Wiener, N. (1949). Extrapolation, Interpolation and Smoothing of Stationary Time Series, MIT Technology Press, Cambridge, Massachusetts.

    Google Scholar 

  • Zhang, C. H. (1990). Fourier methods for estimating mixing densities and distributions, Ann. Statist., 18, 806–831.

    Google Scholar 

  • Zhang, C. H. (1995). On estimating mixing densities in discrete exponential family models, Ann. Statist., 23, 929–945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Pensky, M., Zayed, A.I. Density Deconvolution of Different Conditional Distributions. Annals of the Institute of Statistical Mathematics 54, 701–712 (2002). https://doi.org/10.1023/A:1022435832605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022435832605

Navigation