Skip to main content
Log in

Limit Processes with Independent Increments for the Ewens Sampling Formula

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The Ewens sampling formula in population genetics can be viewed as a probability measure on the group of permutations of a finite set of integers. Functional limit theory for processes defined through partial sums of dependent variables with respect to the Ewens sampling formula is developed. Techniques from probabilistic number theory are used to establish necessary and sufficient conditions for weak convergence of the associated dependent process to a process with independent increments. Not many results on the necessity part are known in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arratia, R. and Tavaré, S. (1992). Limit theorems for combinatorial structures via discrete process approximations, Random Structures Algorithms, 3, 321–345.

    Google Scholar 

  • Arratia, R., Barbour, A. D. and Tavaré, S. (1992). Poisson process approximations for the Ewens sampling formula, Ann. Appl. Probab., 2, 519–535.

    Google Scholar 

  • Babu, G. J. (1973). A note on the invariance principle for additive functions, Sankhyā Ser. A, 35, 307–310.

    Google Scholar 

  • Babu, G. J. and Manstavičius, E. (1999). Brownian motion for random permutations, Sankhyā Ser. A, 61, 312–327.

    Google Scholar 

  • Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

    Google Scholar 

  • Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular variation, 2nd ed., Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • DeLaurentis, J. M. and Pittel, B. G. (1985). Random permutations and the Brownian motion, Pacific J. Math., 119, 287–301.

    Google Scholar 

  • Donnelly, P., Kurtz, T. G. and Tavaré, S. (1991). On the functional central limit theorem for the Ewens Sampling Formula, Ann. Appl. Probab., 1, 539–545.

    Google Scholar 

  • Drmota, M. and Tichy, R. F. (1997). Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, 1651, Springer, Berlin.

    Google Scholar 

  • Erdös, P. and Turán, P. (1965). On some problems of a statistical group theory I, Z. Wahrsch. Verw. Gebiete, 4, 175–186.

    Google Scholar 

  • Ewens, W. J. (1972). The sampling theory of selectively neutral alleles, Theoretical Population Biology, 3, 87–112.

    Google Scholar 

  • Ewens, W. J. (1979). Mathematical Population Genetics, Springer, Berlin.

    Google Scholar 

  • Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Volume 1, 2nd ed., Wiley, New York.

    Google Scholar 

  • Hansen, J. C. (1990). A functional central limit theorem for the Ewens Sampling Formula, J. Appl. Probab., 27, 28–43.

    Google Scholar 

  • Hirth, U. M. (1997a). A Poisson approximation for the Dirichlet distribution, the Ewens sampling formula and the Griffith-Engen-McCloskey law by the Stein-Chen coupling method, Bernoulli, 3, 225–232.

    Google Scholar 

  • Hirth, U. M. (1997b). Probabilistic number theory, the GEM/Poisson-Dirichlet distribution and the arc-sine law, Combin. Probab. Comput., 6, 57–77.

    Google Scholar 

  • Hirth, U. M. (1997c). From GEM back to Dirichlet via Hoppe's urn, Combin. Probab. Comput., 6, 185–195.

    Google Scholar 

  • Kingman, J. F. C. (1980). Mathematics of Genetic Diversity, SIAM, Philadelphia, Pennsylvania.

    Google Scholar 

  • Kubilius, J. (1964). Probabilistic Methods in the Theory of Numbers, Translations of Mathematical Monographs, 11, AMS, Providence, Rhode Island.

    Google Scholar 

  • Manstavičius, E. (1984). Arithmetic simulation of stochastic processes, Lithuanian Math. J., 24, 276–285.

    Google Scholar 

  • Manstavičius, E. (1985). Additive functions and stochastic processes, Lithuanian Math. J., 25, 52–61.

    Google Scholar 

  • Manstavičius, E. (1996), Additive and multiplicative functions on random permutations, Lithuanian Math. J., 36(4), 400–408.

    Google Scholar 

  • Petrov, V. V. (1975). Sums of Independent Random Variables, Springer, New York.

    Google Scholar 

  • Philipp, W. (1973). Arithmetic functions and Brownian motion, Proc. Sympos. Pure Math., 24, 233–246.

    Google Scholar 

  • Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge.

    Google Scholar 

  • Tenenbaum, G. (1995). Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  • Timofeev, N. M. and Usmanov, H. H. (1984). Arithmetic modelling of random processes with independent increments, Dokl. Akad. Nauk Respub. Tadzhikistan, 27(10), 556–559 (Russian).

    Google Scholar 

  • Timofeev, N. M. and Usmanov, H. H. (1986). On a class of arithmetic models of random processes, Dokl. Akad. Nauk Respub. Tadzhikistan, 29(6), 330–334 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Babu, G.J., Manstavičius, E. Limit Processes with Independent Increments for the Ewens Sampling Formula. Annals of the Institute of Statistical Mathematics 54, 607–620 (2002). https://doi.org/10.1023/A:1022419328971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022419328971

Navigation