Skip to main content
Log in

How Far Can the Generalized Second Law Be Generalized?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Jacob Bekenstein's identification of black hole event horizon area with entropy proved to be a landmark in theoretical physics. In this paper we trace the subsequent development of the resulting generalized second law of thermodynamics (GSL), especially its extension to incorporate cosmological event horizons. In spite of the fact that cosmological horizons do not generally have well-defined thermal properties, we find that the GSL is satisfied for a wide range of models. We explore in particular the case of an asymptotically de Sitter universe filled with a gas of small black holes as a means of casting light on the relative entropic ‘worth’ of black hole versus cosmological horizon area. We present some numerical solutions of the generalized total entropy as a function of time for certain cosmological models, in all cases confirming the validity of the GSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    Google Scholar 

  2. S. W. Hawking, Phys. Rev. Lett 26, 1344 (1971).

    Google Scholar 

  3. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Google Scholar 

  4. S. W. Hawking, Phys. Rev. D 13(2), 191–197 (1976).

    Google Scholar 

  5. P. C. W. Davies, S. A. Fulling, and W. G. Unruh, Phys. Rev. D 13(10), 2720–2733 (1976).

    Google Scholar 

  6. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 10 (1977).

    Google Scholar 

  7. C. H. Lineweaver, “Cosmological parametersz,” in Proceedings COSMO-01, Rovaniemi, Finland, preprint astro-ph/0112381 (2001).

  8. J. L. Sievers et al., “Cosmological parameters from cosmic background imager observations and comparisons with Boomerang, DASI and MAXIMAz,” submitted to Astrophys. J., preprint astro-ph/0205387 (2002).

  9. T. Kiang, Chinese Astronomy and Astrophysics 21(1), 1–18 (1997).

    Google Scholar 

  10. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  11. P. C. W. Davies, Class. Quantum Grav. 5, 1349–1355 (1988a).

    Google Scholar 

  12. P. C. W. Davies, Class. Quantum Grav. 4, L225–L228 (1987).

    Google Scholar 

  13. J. D. Barrow, Phys. Lett. B 183, 285 (1987).

    Google Scholar 

  14. P. C. W. Davies, Ann. Inst. Henri Poincaré 49(3), 297–306 (1988b).

    Google Scholar 

  15. B. Carter, in Les Astre Occlus (Gordon & Breach, New York, 1973).

    Google Scholar 

  16. P. C. W. Davies, Phys. Rev. D 30(4), 737–742 (1984).

    Google Scholar 

  17. P. C. W. Davies, L. H. Ford, and D. N. Page, Phys. Rev. D 34(6), 1700 (1986).

    Google Scholar 

  18. T. M. Davis, P. C. W. Davies, and C. H. Lineweaver, in preparation (2003).

  19. T. Shiromizu, K. Nakao, H. Kodama, and K. Maeda, Phys. Rev. D 47, R3099 (1993).

    Google Scholar 

  20. S. A. Hayward, T. Shiromizu, and K. Nakao, Phys. Rev. D 49, 5080 (1994).

    Google Scholar 

  21. W. Boucher, G. W. Gibbons, and G. Horowitz, Phys. Rev. D 30, 2447 (1984).

    Google Scholar 

  22. K. Maeda, T. Koike, M. Narita, and A. Ishibashi, “Upper bound for entropy in asymptotically de Sitter space time,” preprint gr-qc/9712029 (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, P.C.W., Davis, T.M. How Far Can the Generalized Second Law Be Generalized?. Foundations of Physics 32, 1877–1889 (2002). https://doi.org/10.1023/A:1022318700787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022318700787

Navigation