Skip to main content
Log in

The Percolation Transition for the Zero-Temperature Stochastic Ising Model on the Hexagonal Lattice

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

On the planar hexagonal lattice \(\mathbb{H}\), we analyze the Markov process whose state σ(t), in \(\{ - 1, + 1\} ^\mathbb{H} \), updates each site v asynchronously in continuous time t≥0, so that σ v (t) agrees with a majority of its (three) neighbors. The initial σ v (0)'s are i.i.d. with P[σ v (0)=+1]=p∈[0,1]. We study, both rigorously and by Monte Carlo simulation, the existence and nature of the percolation transition as t→∞ and p→1/2. Denoting by χ+(t,p) the expected size of the plus cluster containing the origin, we (1) prove that χ+(∞,1/2)=∞ and (2) study numerically critical exponents associated with the divergence of χ+(∞,p) as p↑1/2. A detailed finite-size scaling analysis suggests that the exponents γ and ν of this t=∞ (dependent) percolation model have the same values, 4/3 and 43/18, as standard two-dimensional independent percolation. We also present numerical evidence that the rate at which σ(t)→σ(∞) as t→∞ is exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43:357-459 (1994).

    Google Scholar 

  2. T. M. Liggett, Interacting Particle Systems (Springer, New York, 1985).

    Google Scholar 

  3. F. Camia, C. M. Newman, and V. Sidoravicius, Approach to fixation for zero-temperature stochastic Ising models on the hexagonal lattice, in In and Out of Equilibrium: Probability with a Physics Flavor, V. Sidoravicius, ed. (Birkhäuser, Boston, 2002), pp. 163-183.

    Google Scholar 

  4. S. Nanda, C. M. Newman, and D. L. Stein, Dynamics of Ising spin systems at zero temperature, in On Dobrushin's Way (From Probability Theory to Statistical Physics), R. Minlos, S. Shlosman, and Y. Suhov, eds., Amer. Math. Society Transl. (2) 198:183-194 (2000).

  5. H. Kesten, Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982).

    Google Scholar 

  6. F. Camia, E. De Santis, and C. M. Newman, Clusters and recurrence in the two-dimensional zero-temperature stochastic Ising model, Ann. Appl. Probab. 12:565-580 (2002).

    Google Scholar 

  7. T. E. Harris, A correlation inequality for Markov processes in partially ordered state spaces, Ann. Probab. 5:451-454 (1977).

    Google Scholar 

  8. A. Gandolfi, M. Keane, and L. Russo, On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation, Ann. Probab. 16:1147-1157 (1988).

    Google Scholar 

  9. M. P. M. den Nijs, A relation between the temperature exponents of the eight-vertex and q‐state Potts model, J. Phys. A: Math. Gen. 12:1857-1868 (1979).

    Google Scholar 

  10. B. Nienhuis, E. K. Riedel, and M. Schick, Magnetic exponents of the two dimensional q‐state Potts model, J. Phys. A: Math. Gen. 13:L189-L192 (1980).

    Google Scholar 

  11. R. P. Pearson, Conjecture for the extended Potts model magnetic eigenvalue, Phys. Rev. B 22:2579-2580 (1980).

    Google Scholar 

  12. G. Grimmett, Percolation (Springer, Berlin, 1999).

    Google Scholar 

  13. L. Russo, A note on percolation, Z. Wahrsch. Verw. Gebiete 43:39-48 (1987).

    Google Scholar 

  14. H. Saleur and B. Derrida, A combination of Monte Carlo and transfer matrix methods to study 2d and 3d percolation, J. Physique 46:1043-1057 (1985).

    Google Scholar 

  15. M. N. Barber, Finite size scaling, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic, London, 1983), pp. 146-266.

    Google Scholar 

  16. J. L. Cardy, ed., Finite-Size Scaling (North-Holland, Amsterdam, 1988).

    Google Scholar 

  17. V. Privman, ed., Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  18. C. D. Howard, Zero-temperature Ising spin dynamics on the homogeneous tree of degree three, J. Appl. Probab. 37:736-747 (2000).

    Google Scholar 

  19. C. M. Newman and D. L. Stein, Blocking and persistence in the zero-temperature dynamics of homogeneous and disordered Ising models, Phys. Rev. Lett. 82:3944-3947 (1999).

    Google Scholar 

  20. L. R. Fontes, R. H. Schonmann, and V. Sidoravicius, Stretched exponential fixation in stochastic Ising models at zero temperature, Commun. Math. Phys. 228:495-518 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, C.D., Newman, C.M. The Percolation Transition for the Zero-Temperature Stochastic Ising Model on the Hexagonal Lattice. Journal of Statistical Physics 111, 57–62 (2003). https://doi.org/10.1023/A:1022296706006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022296706006

Navigation