Skip to main content
Log in

The Landauer Resistivity on Quantum Wires

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the Landauer resistivity of the Kronig–Penney model which has various behavior depending on the potential and the Fermi energy. In the case of the Sturmian quasiperiodic potential, we discuss examples in which lim inf of it is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Gesztesy and W. Kirsch, One-dimensional Schrödinger operators with interactions singular on a discrete set, J. Reine Angrew. Math. 362:28-50 (1985).

    Google Scholar 

  2. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics (Springer-Verlag, 1988).

  3. M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31:6207-6215 (1985).

    Google Scholar 

  4. J. Bellissard, A. Formoso, R. Lima, and D. Testard, Quasiperiodic interaction with a metal-insulator transition, Phys. Rev. B 26:3024-3030 (1982).

    Google Scholar 

  5. M. Kaminaga and F. Nakano, Spectral properties of quasiperiodic Kronig-Penney model, Tukuba J. of Math. 26:205-228 (2002).

    Google Scholar 

  6. W. Kirsch and F. Martinelli, On the spectrum of Schrödinger operators with a random potential, Commun. Math. Phys. 85:329-350 (1982).

    Google Scholar 

  7. P. Bougerol and J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators (Birkhäuser, 1985).

  8. H. Schultz-Baldes and J. Bellissard, Anomalous transport: A mathematical framework, Rev. Math. Phys. 10:1-46 (1998).

    Google Scholar 

  9. H. Schultz-Baldes and J. Bellissard, A kinetic theory for quantum transport in aperiodic media, J. Stat. Phys. 91:991-1026 (1998).

    Google Scholar 

  10. F. Nakano and M. Kaminaga, Absence of transport under a slowly varying potential in disordered systems, J. Stat. Phys. 97:917-940 (1999).

    Google Scholar 

  11. F. Nakano, Absence of transport in Anderson localization, Rev. Math. Phys. 14:375-407 (2002).

    Google Scholar 

  12. A. Sütö, The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys. 111:409-415 (1987).

    Google Scholar 

  13. A. Sütö, Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian, J. Stat. Phys. 56:525-531 (1989).

    Google Scholar 

  14. J. Bellissard, B. Iochum, E. Scoppola, and D. Testard, Spectral properties of one dimensional quasi-crystals, Commun. Math. Phys. 125:527-543 (1989).

    Google Scholar 

  15. D. Damanik and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals, I. Absence of eigenvalues, Commun. Math. Phys. 207:687-696 (1999).

    Google Scholar 

  16. M. Kaminaga and F. Nakano, Spectral properties of quasiperiodic Kronig-Penney model II.

  17. S. Jitomirskaya and Y. Last, Power-law subordinacy and singular spectra. I. Half-line operators, Acta Math. 183:171-189 (1999).

    Google Scholar 

  18. S. Jitomirskaya and Y. Last, Power law subordinacy and singular spectra. II. Line operators, Comm. Math. Phys. 211:643-658 (2000).

    Google Scholar 

  19. D. Damanik, R. Killip, and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals. III. α-continuity, Comm. Math. Phys. 212:191-204 (2000).

    Google Scholar 

  20. S. Lang, Introduction to Diophantine Approximations (Addison-Wesley, 1966).

  21. B. Sutherland and M. Kohmoto, Resistance of a one-dimensional quasicrystal: Power-law growth, Phys. Rev. B 36:5877-5886 (1987).

    Google Scholar 

  22. B. Iochum and D. Testard, Power low growth for the resistance in the Fibonacci model, J. Stat. Phys. 65:715-723 (1991).

    Google Scholar 

  23. B. Iochum, L. Raymond, and D. Testard, Resistance of one-dimensional quasicrystals, Physica A 187:353-368 (1992).

    Google Scholar 

  24. D. Damanik and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent, Lett. Math. Phys. 50:245-257 (1999).

    Google Scholar 

  25. M. Herman, Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore en dimension 2, Commun. Math. Helv. 58:453-502 (1983).

    Google Scholar 

  26. H. L. Cycon, R. G. Froese, W. Kirsh, and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics (Springer-Verlag, 1987).

  27. J. E. Avron and B. Simon, Almost periodic Schrödinger operators II. The integrated density of states, Duke Math. J. 50:369-391 (1983).

    Google Scholar 

  28. J. M. Combes and L. E. Thomas, Asymptotic behavior of eigenfunctions for multi-particle Schrödinger operators, Commun. Math. Phys. 34:251-270 (1973).

    Google Scholar 

  29. D. Damanik, α‐continuity properties of one-dimensional quasicrystals, Comm. Math. Phys. 192:169-182 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaminaga, M., Nakano, F. The Landauer Resistivity on Quantum Wires. Journal of Statistical Physics 111, 339–353 (2003). https://doi.org/10.1023/A:1022265226479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022265226479

Navigation