Skip to main content
Log in

Analyticity of Smooth Eigenfunctions and Spectral Analysis of the Gauss Map

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We provide a sufficient condition of analyticity of infinitely differentiable eigenfunctions of operators of the form Uf(x)=∫a(x,y)f(b(x,y))μ(dy) acting on functions \(f:[u,\user1{v}] \to \mathbb{C}\) (evolution operators of one-dimensional dynamical systems and Markov processes have this form). We estimate from below the region of analyticity of the eigenfunctions and apply these results for studying the spectral properties of the Frobenius–Perron operator of the continuous fraction Gauss map. We prove that any infinitely differentiable eigenfunction f of this Frobenius–Perron operator, corresponding to a non-zero eigenvalue admits a (unique) analytic extension to the set \(\mathbb{C}\backslash ( - \infty , - 1)\). Analyzing the spectrum of the Frobenius–Perron operator in spaces of smooth functions, we extend significantly the domain of validity of the Mayer and Röpstorff asymptotic formula for the decay of correlations of the Gauss map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory (Springer-Verlag, New York, 1982).

    Google Scholar 

  2. D. Mayer and G. Roepstorff, On the relaxation time of Gauss's continued-fraction map I. The Hilbert space approach (Koopmanism), J. Stat. Phys. 47:149-171 (1987).

    Google Scholar 

  3. D. Mayer and G. Roepstorff, On the relaxation time of Gauss's continued-fraction map II. The Banach space approach (transfer operator method), J. Stat. Phys. 50:331-344 (1988).

    Google Scholar 

  4. T. Bedford, M. Keane, and C. Series, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Oxford University Press, 1991).

  5. J. Barrow, Chaotic behaviour in general relativity, Phys. Reports 85:1-49 (1982).

    Google Scholar 

  6. I. Khalatnikov, E. Lifshitz, K. Khanin, L. Schur, and Ya. Sinai, On the stochasticity in relativistic cosmology, J. Stat. Phys. 38:97-114 (1985).

    Google Scholar 

  7. D. Mayer, Relaxation properties of the mixmaster universe, Phys. Lett. A 121:390-394 (1987).

    Google Scholar 

  8. Y. Aizawa, N. Koguro, and I. Antoniou, Chaos and singularities in the mixmaster universe, Progress in Theor. Phys. 98:1225-1250 (1997).

    Google Scholar 

  9. A. Lasota and M. Mackey, Probabilistic Properties of Deterministic Systems (Cambridge University Press, Cambridge, UK, 1985).

    Google Scholar 

  10. V. Baladi, Positive Transfer Operators and Decay of Correlations (World Scientific, 2000).

  11. D. Ruelle, Zeta-Functions for expanding maps and Anosov flows, Inventiones Mathematicae 34:231-242 (1976).

    Google Scholar 

  12. D. Ruelle, An extension of the theory of Fredholm determinants, Publ. Math. 72:175-193 (1990).

    Google Scholar 

  13. D. Ruelle, Thermodynamoc formalism for expanding maps, Comm. Math. Phys. 125:239-262 (1989).

    Google Scholar 

  14. D. Ruelle, Analytic completion for dynamical zeta-functions, Helv. Phys. Acta 66:181-191 (1993).

    Google Scholar 

  15. M. Pollicott, Meromorphic extensions of generalized zeta functions, Inventiones Mathematicae 85:147-164 (1986).

    Google Scholar 

  16. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Zeitschrift 180:119-140 (1982).

    Google Scholar 

  17. G. Keller and T. Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys. 149:31-69 (1992).

    Google Scholar 

  18. V. Baladi, J.‐P. Eckmann, and D. Ruelle, Resonances for intermittent systems, Nonlinearity 2:119-135.

  19. I. Antoniou, V. A. Sadovnichii, and S. A. Shkarin, New extended spectral decompositions of the Renyi map, Phys. Lett. A 258:237-243 (1999).

    Google Scholar 

  20. I. Antoniou, Yu. Melnikov, Z. Suchanecki, and S. Shkarin, Extended spectral decompositions of the Renyi map, Chaos, Solitons, and Fractals 11:393-421 (2000).

    Google Scholar 

  21. I. Antoniou and S. Tasaki, Generalized spectral decompositions of mixing dynamical systems, International J. Quantum Chemistry 46:425-474 (1993).

    Google Scholar 

  22. I. Antoniou and S. Tasaki, Spectral decomposition of the Renyi map, J. Phys. A 26:73-94 (1993).

    Google Scholar 

  23. I. Antoniou and Bi Chao, Spectral decomposition of the chaotic logistic map, Nonlinear World 4:135-143 (1997).

    Google Scholar 

  24. I. Antoniou and S. A. Shkarin, Extended spectral decompositions of evolution operators, (1999) Research Notes in Mathematics, Vol. 399, in Generalized Functions, Operator Theory and Dynamical Systems (New York, 1999), pp. 171-201.

  25. I. Gokhberg and M. Krein, Introduction to the theory of linear nonselfadjoint operators, in Translations of Math. Monographs, Vol. 18 (AMS, New York, 1969).

    Google Scholar 

  26. W. Rudin, Functional Analysis (McGraw-Hill, 1973).

  27. L. Schwartz, Analyse Mathematique (Hermann, 1967).

  28. E. C. Titchmarsh, The Theory of Functions (Oxford University Press, Oxford, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoniou, I., Shkarin, S.A. Analyticity of Smooth Eigenfunctions and Spectral Analysis of the Gauss Map. Journal of Statistical Physics 111, 355–369 (2003). https://doi.org/10.1023/A:1022217410549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022217410549

Navigation