Skip to main content
Log in

Monte Carlo Studies of Wetting, Interface Localization and Capillary Condensation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a brief review of Monte Carlo simulations of ferromagnetic Ising lattices in a film geometry with surface magnetic fields. The seminal work of Nakanishi and Fisher [Phys. Rev. Lett. 49:1565 (1982)] showed how phase transitions in such models are related to wetting in systems with short range forces; and we will show how theoretical concepts about critical and tricritical wetting, interface localization-delocalization, and capillary condensation can be tested in this and similar models. After reviewing the qualitative, phenomenological description of these phenomena on a mean field level, we will summarize predictions of scaling theories. Comments will be made about the models studied and simulation techniques as well as the specific problems that occur in the relevant finite size scaling analysis. The resulting simulational data have prompted considerable new theoretical efforts, but there are still unsolved problems with respect to critical wetting. We will also present results for interface localization-delocalization transitions in both Ising models and lattice polymer mixtures in a thin film geometry and show that theory can account for many, but not all, aspects of the simulations. In systems with asymmetric boundary fields rather complex phase diagrams can result, and these should be relevant for corresponding experiments. The simulational evidence is fully compatible with the scaling predictions of Fisher and Nakanishi [J. Chem. Phys. 75:5875 (1981)] on capillary condensation. To conclude we shall summarize the major unanswered theoretical questions in this rich field of inquiry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Young, Philos. Trans. Roy. Soc. London 95:65(1805)

    Google Scholar 

  2. J. W. Cahn, J. Chem. Phys. 66:3667(1977).

    Google Scholar 

  3. On an atomic scale, the density profile of a fluid against a hard wall shows well-known density oscillations (i.e., a "layered structure"). We assume here that we are so close to the bulk critical point, that the correlation length of density fluctuations is much larger than interatomic distances and can be used as a linear dimension of coarse-graining cells. Using the average of the density over such coarse graining cells as an order parameter in Fig. 2 rather than the density itself, we average the layered structure out.

  4. D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfacial Phenomena, C. A. Croxton, ed. (Wiley, New York 1986), p. 45.

    Google Scholar 

  5. S. Dietrich, in Phase Transitions and Critical Phenomena, Vol. XII, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1988), p. 1.

    Google Scholar 

  6. M. Schick, in Liquids at Interfaces, J. Charvolin, J. F. Joanny, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1990), p. 415.

    Google Scholar 

  7. K. Binder and P. C. Hohenberg, Phys. Rev. B 6:3461(1972)

    Google Scholar 

  8. K. Binder and P. C. Hohenberg, Phys. Rev. B ibid B9:2194(1974).

    Google Scholar 

  9. K. Binder, in Phase Transitions and Critical Phenomena, Vol. VIII, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1983), p. 1.

    Google Scholar 

  10. A. J. Liu and M. E. Fisher, Phys. Rev. A 40:7202(1989), and references therein.

    Google Scholar 

  11. H. W. Diehl and M. Smock, Phys. Rev. B 47:5841(1993)

    Google Scholar 

  12. H. W. Diehl and M. Smock, Phys. Rev. B 48, 6740(E)(1993).

    Google Scholar 

  13. A. J. Bray and M. A. Moore, J. Phys. A 10:1927(1977).

    Google Scholar 

  14. K. Ohno and Y. Okabe, Phys. Rev. B 39:9764(1989).

    Google Scholar 

  15. H. Nakanishi and M. E. Fisher, Phys. Rev. Lett. 49:1565(1982)

    Google Scholar 

  16. We disregard here temperatures far below the bulk critical temperature Tcb and thus shall not discuss the fact that near the roughening transition temperature TR complete wetting is replaced by a sequence of layering transitions, as discussed by R. Pandit, M. Schick, and M. Wortis, Phys. Rev. B 25:5112 (1982) and by K. Binder and D. P. Landau, Phys. Rev. B 46:4844 (1992).

  17. K. Binder, R. Evans, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. E 53:5023(1996).

    Google Scholar 

  18. A. O. Parry and R. Evans, Phys. Rev. Lett. 64:439(1990).

    Google Scholar 

  19. M. Müller, K. Binder, and E. V. Albano, Physica A 279:188(2000), M. Müller, E. V. Albano, and K. Binder, Phys. Rev. E 62:5281(2000).

    Google Scholar 

  20. K. Binder, M. Müller, and E. V. Albano, Phys. Chem. Chem. Phys. 3:1160(2001).

    Google Scholar 

  21. J. Rogiers and J. O. Indekeu, Europhys. Lett. 24:21(1993).

    Google Scholar 

  22. E. Carlon and A. Drzewinski, Phys. Rev. Lett. 79:1591(1997).

    Google Scholar 

  23. M. Müller, K. Binder, and E. V. Albano, Europhys. Lett. 50:724(2000).

    Google Scholar 

  24. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).

    Google Scholar 

  25. W. T. Thomson (Lord Kelvin), Philos. Mag. 42:448(1871).

    Google Scholar 

  26. M. E. Fisher and H. Nakanishi, J. Chem. Phys. 75:5857(1981).

    Google Scholar 

  27. H. Nakanishi and M. E. Fisher, J. Chem. Phys. 78:3279(1983).

    Google Scholar 

  28. R. Evans and P. Taranzona, Phys. Rev. Lett. 52:557(1984).

    Google Scholar 

  29. R. Evans, J. Phys. Condens. Matter 2:8989(1990).

    Google Scholar 

  30. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkoviak, Rep. Progr. Phys. 62:1573(1999).

    Google Scholar 

  31. D. Nicolaides and R. Evans, Phys. Rev. B 39:9336(1989).

    Google Scholar 

  32. A. Milchev and K. Binder, J. Chem. Phys. 114:8610(2001).

    Google Scholar 

  33. A. Milchev and A. Milchev, Europhys. Lett. 56:695(2001).

    Google Scholar 

  34. L. G. MacDowell, M. Müller, and K. Binder, Colloids Surf. A 206:277(2002).

    Google Scholar 

  35. J. W. Gibbs. The Collected Works of J. Willard Gibbs (Yale University Press, London, 1957), p. 288.

    Google Scholar 

  36. P. G. deGennes, Rev. Mod. Phys. 57:827(1985).

    Google Scholar 

  37. J. O. Indekeu, Internat. J. Modern Phys. 138:309(1994), and references therein.

    Google Scholar 

  38. T. Getta and S. Dietrich, Phys. Rev. E 57:655(1998), and references therein.

    Google Scholar 

  39. J. Drelich, Colloids Surf. A 116:43(1996).

    Google Scholar 

  40. C. Bauer and S. Dietrich, Euro. Phys. J. B 10:767(1999).

    Google Scholar 

  41. M. P. Gelfand and R. Lipowsky, Phys. Rev. B 36:8725(1987).

    Google Scholar 

  42. T. Bieker and S. Dietrich, Phys. A 252:85(1998) and

    Google Scholar 

  43. T. Bieker and S. Dietrich Phys. A 259:466(1998), and refereces therein.

    Google Scholar 

  44. A. Milchev and K. Binder, J. Chem. Phys. 117:6852(2002).

    Google Scholar 

  45. A. J. Liu and G. S. Grest, Phys. Rev. A 44:R7894(1991).

    Google Scholar 

  46. D. B. Abraham, in Phase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1986).

    Google Scholar 

  47. F. Igloi and J. O. Indekeu, Phys. Rev. B 41:6836(1990), and references therein.

    Google Scholar 

  48. J. O. Indekeu, Phys. A 177:428(1991).

    Google Scholar 

  49. I. Schmidt and K. Binder, Z. Phys. B 67:369(1987).

    Google Scholar 

  50. S. Puri and K. Binder, Z. Phys. B 86:263(1992).

    Google Scholar 

  51. K. Binder and H. L. Frisch, Z. Phys. B 84:403(1991).

    Google Scholar 

  52. R. Pandit and M. Wortis, Phys. Rev. B 25:3226(1982).

    Google Scholar 

  53. J. D. Weeks, in Ordering in Strongly Fluctuating Condensed Matter Systems, T. Riste, ed. (Plenum Press, New York, 1980), p. 293.

    Google Scholar 

  54. H. Van Beijeren and I. Nolden, in Structure and Dynamics of Surfaces II, W. Schommers and P. Blankenhagen, eds. (Springer, Berlin, 1987), p. 259.

    Google Scholar 

  55. B. Widom, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, ed. (Academic Press, London 1972), p. 79.

    Google Scholar 

  56. J. S. Rowlinson and B. Widom, Molecular Theory of Capillary (Clarendon, Oxford, 1982).

    Google Scholar 

  57. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett 15:621(1965).

    Google Scholar 

  58. J. D. Weeks, J. Chem. Phys. 67:3106(1977).

    Google Scholar 

  59. J. D. Weeks, Phys. Rev. Lett. 52:2160(1984).

    Google Scholar 

  60. H. W. Diehl, in Phase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1986), p. 75.

    Google Scholar 

  61. M. E. Fisher, Rev. Mod. Phys. 46:597(1974).

    Google Scholar 

  62. A. O. Parry and R. Evans, Phys. A 181:250(1992).

    Google Scholar 

  63. M. R. Swift, A. L. Owczarek, and J. D. Indekeu, Europhys. Lett. 14:475(1991).

    Google Scholar 

  64. K. Binder, M. Müller, F. Schmid, and A. Werner, J. Statist. Phys. 95:1045(1999).

    Google Scholar 

  65. V. Privman, Internat. J. Modern Phys. C 3:857(1992).

    Google Scholar 

  66. M. E. Fisher and J. A. Jin, Phys. Rev. Lett. 69:792(1992); A. J. Jin and M. E. Fisher, Phys. Rev. B 47:7365(1993).

    Google Scholar 

  67. M. E. Fisher, A. J. Jin, and A. O. Parry, Ber. Bunsenges. Phys. Chem. 98:357(1994).

    Google Scholar 

  68. M. Müller and K. Binder, Phys. Rev. E 63:021602(2001).

    Google Scholar 

  69. A. M. Ferrenberg, D. P. Landau, and K. Binder, Phys. Rev. E 58:3353(1998).

    Google Scholar 

  70. E. Brezin, B. I. Halperin, and S. Leibler, Phys. Rev. Lett. 50:1387(1983).

    Google Scholar 

  71. E. Brezin, B. I. Halperin, and S. Leibler, J. Phys. (Paris) 44:775(1983).

    Google Scholar 

  72. R. Lipowsky, D. M. Kroll, and R. K. P. Zia, Phys. Rev. B 27:4499(1983).

    Google Scholar 

  73. D. S. Fisher and D. A. Huse, Phys. Rev. B 32:247(1985).

    Google Scholar 

  74. E. H. Hauge and K. Olaussen, Phys. Rev. B 32:4766(1985).

    Google Scholar 

  75. R. Lipowsky and M. E. Fisher, Phys. Rev. B 36:2126(1987).

    Google Scholar 

  76. E. Brézin and T. Halpin-Healey, J. Phys. (Paris) 48:747. (1987).

    Google Scholar 

  77. E. Brézin and T. Halpin-Healey, Phys. Rev. Lett. 58:1220. (1987).

    Google Scholar 

  78. T. Halpin-Healey, Phys. Rev. B 40:772(1989).

    Google Scholar 

  79. A. O. Parry and J. C. Boulter, Phys. Rev. E 53:6577(1996).

    Google Scholar 

  80. M. Napiorkowski and S. Dietrich, Z. Phys. B 89:263(1992)

    Google Scholar 

  81. M. Napiorkowski and S. DietrichPhys. Rev. E 47:1836(1993).

    Google Scholar 

  82. A. O. Parry and C. J. Boulter, J. Phys. Condens. Matter 6:7199(1994).

    Google Scholar 

  83. K. Mecke and S. Dietrich, Phys. Rev. E 59:6766(1999).

    Google Scholar 

  84. A. Werner, F. Schmid, M. Müller, and K. Binder, Phys. Rev. E 59:728(1999).

    Google Scholar 

  85. M. Müller and L. G. MacDowell, Macromolecules 33:3902(2000).

    Google Scholar 

  86. K. Binder and M. Müller, Internat. J. Modern Phys. C 11:1093(2000).

    Google Scholar 

  87. V. L. Ginzburg, Fiz. Tverd. Tela (Leningrad) 2:2031(1960)

    Google Scholar 

  88. V. L. Ginzburg[Sov. Phys. Solid State 2:1824(1960)].

    Google Scholar 

  89. J. Als-Nielsen and R. J. Birgeneau, Amer. J. Phys. 45:554(1970).

    Google Scholar 

  90. M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang, Phys. A 188:487(1992).

    Google Scholar 

  91. C. J. Boulter and A. O. Parry, Phys. Rev. Lett. 74:3403(1995).

    Google Scholar 

  92. A. O. Parry and C. J. Boulter, Phys. A 218:77(1995).

    Google Scholar 

  93. C. J. Boulter and A. O. Parry, Phys. A 218:109(1995).

    Google Scholar 

  94. A. O. Parry, C. J. Boulter, and P. S. Swain, Phys. Rev. E 52:R5768(1995).

    Google Scholar 

  95. P. S. Swain and A. O. Parry, Europhys. Lett. 37:207(1997).

    Google Scholar 

  96. A. O. Parry, J. Phys.: Condens. Matter 8:10761(1996).

    Google Scholar 

  97. C. J. Boulter, Mod. Phys. Lett. 15:993(2001).

    Google Scholar 

  98. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21:3976(1980).

    Google Scholar 

  99. K. Binder and E. Luijten, Phys. Rep. 344:179. (2001).

    Google Scholar 

  100. M. E. Fisher, in Critical Phenomena, Proc. 1970 E. Fermi Int. School of Physics, M. S. Green, ed. (Academic, London, 1971), p.1.

    Google Scholar 

  101. M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28:1516(1972).

    Google Scholar 

  102. M. N. Barber, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1983), p. 145.

    Google Scholar 

  103. V. Privman, ed., Finite Size Scaling and the Numerical Simulation of Statistical Systems (Singapore, World Scientific, 1990).

    Google Scholar 

  104. K. Binder, in Computational Methods in Field Theory, H. Gausterer and C. B. Lang, eds. (Springer, Berlin, 1992), p. 59.

    Google Scholar 

  105. K. Binder and D. P. Landau, Phys. Rev. Lett. 52:318(1984).

    Google Scholar 

  106. D. P. Landau and K. Binder, Phys. Rev. B 41:4633(1990).

    Google Scholar 

  107. C. Ruge, S. Dunkelmann, F. Wagner, and J. Wulf, J. Statist. Phys. 73:293(1993).

    Google Scholar 

  108. C. Ruge and F. Wagner, Phys. Rev. B 52:4209(1995).

    Google Scholar 

  109. H. W. Diehl and M. Shpot, Nucl. Phys. B 528:595(1998).

    Google Scholar 

  110. H. W. Diehl, Internat. J. Modern Phys. B 11:3503(1997).

    Google Scholar 

  111. A. D. Bruce and N. B. Wilding, Phys. Rev. Lett. 86:193(1992).

    Google Scholar 

  112. K. Binder, Thin Solid Films 20:367(1974).

    Google Scholar 

  113. T. W. Capehart and M. E. Fisher, Phys. Rev. B 13:6021(1976).

    Google Scholar 

  114. M. E. Fisher and H. Au-Yang, Phys. A 101:255(1980)

    Google Scholar 

  115. H. Au-Yang and M. E. Fisher, Phys. Rev. B 21:3956(1980).

    Google Scholar 

  116. F. Freire, D. O'Connor, and C. R. Stephens, J. Statist. Phys. 74:219(1994)

    Google Scholar 

  117. D. O'Connor and R. C. Stephens, Phys. Rev. Lett. 72:506(1994).

    Google Scholar 

  118. Y. Rouault, J. Baschnagel, and K. Binder, J. Statist. Phys. 80:1009(1995).

    Google Scholar 

  119. D. M. Kroll, R. Lipowsky, and R. K. P. Zia, Phys. Rev. B 32:1862(1985).

    Google Scholar 

  120. M. E. Fisher and H. Wen, Phys. Rev. Lett. 68:3654(1992).

    Google Scholar 

  121. C. J. Boulter and F. Clarysse, Eur. Phys. J. E 5:465(2001).

    Google Scholar 

  122. E. Riedel and F. J. Wegner, Z. Phys. 225:195(1969).

    Google Scholar 

  123. M. Hasenbusch, Internat. J. Modern Phys. C 12:91(2001).

    Google Scholar 

  124. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  125. R. H. Swendson and J. S. Wang, Phys. Rev. Lett. 58:86(1987).

    Google Scholar 

  126. U. Wolff, Phys. Rev. Lett. 62:361(1989).

    Google Scholar 

  127. R. H. Swendsen, J. S. Wang, and A. M. Ferrenberg, The Monte Carlo Method in Condensed Matter Physics (Springer, Berlin, 1992), p. 75.

    Google Scholar 

  128. J. S. Wang, Phys. A 161:249(1989).

    Google Scholar 

  129. P. G. Lauwers and V. Rittenberg, Phys. Lett. B 233:197(1989).

    Google Scholar 

  130. V. S. Dotsenko, W. Selke, and A. L. Talapov, Phys. A 170, 278(1990).

    Google Scholar 

  131. O. Redner, J. Machta, and L. F. Chayes, Phys. Rev. E 58:2749(1998)

    Google Scholar 

  132. L. Chayes, J. Machta, and O. Redner, J. Statist. Phys. 93:17(1998)

    Google Scholar 

  133. J. Machta, Internat. J. Modern Phys. C 10:1427(1999).

    Google Scholar 

  134. O. Dillmann, W. Janke, M. Müller, and K. Binder, J. Chem. Phys. 114:5853(2001).

    Google Scholar 

  135. K. Binder and D. P. Landau, J. Appl. Phys. 57:3306(1985).

    Google Scholar 

  136. K. Binder, D. P. Landau, and D. M. Kroll, Phys. Rev. Lett. 56, 2276(1986).

    Google Scholar 

  137. K. Binder and D. P. Landau, Phys. Rev. B 37:1745(1988).

    Google Scholar 

  138. K. Binder, D. P. Landau, and S. Wansleben, Phys. Rev. B 40:6971(1989).

    Google Scholar 

  139. K. Binder and D. P. Landau, Phys. Rev. B 46:4844(1992).

    Google Scholar 

  140. K. Binder and D. P. Landau, J. Chem. Phys. 96:1444(1992).

    Google Scholar 

  141. K. Binder, A. M. Ferrenberg, and D. P. Landau, Ber. Bunsenges. Phys. Chem. 98:340(1994).

    Google Scholar 

  142. K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. Lett. 74:298(1985).

    Google Scholar 

  143. K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. E 51:2823(1995).

    Google Scholar 

  144. D. P. Landau and K. Binder, in STATPHYS 19, B. Hao, ed. (World Scientific, Singapore, 1996), p. 446.

    Google Scholar 

  145. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21:1087(1953)

    Google Scholar 

  146. M. Hasenbusch and S. Meyer, Phys. Rev. Lett. 66:530(1991).

    Google Scholar 

  147. B. J. Schulz, K. Binder, and M. Müller, Int. J. Mod. Phys. C 13:477(2002).

    Google Scholar 

  148. F. Wang and D. P. Landau, Phys. Rev. Lett. 86:2050(2001).

    Google Scholar 

  149. A. B. Bortz, M. M. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17:10(1975).

    Google Scholar 

  150. A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, Phys. Rev. Lett. 69:3382(1992)

    Google Scholar 

  151. W. Janke, in Computational Physics: Selected Methods, Simple Exercises, Serious Applications, K. H. Hoffmann and M. Schreiber, eds. (Springer, Berlin, 1996), p. 10.

    Google Scholar 

  152. S. Kirkpatrick and E. Stoll, J. Comput. Phys. 40:517(1981).

    Google Scholar 

  153. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63:1195(1989)

    Google Scholar 

  154. K. Binder and D. P. Landau, Phys. Rev. B 30:147(1984).

    Google Scholar 

  155. C. Borgs and R. Kotecky, J. Statist. Phys. 61:79(1990)

    Google Scholar 

  156. C. Borgs, R. Kotecky, and S. Miracle-Sole, J. Statist. Phys. 62:529(1991).

    Google Scholar 

  157. C. Borgs and W. Janke, Phys. Rev. Lett. 68:1738(1992)

    Google Scholar 

  158. W. Janke, Phys. Rev. B 47:1453(1993).

    Google Scholar 

  159. H. W. Blöte, E. Luijten, and J. R. Heringa, J. Phys. A 28:6289(1995).

    Google Scholar 

  160. K. Binder, Phys. Rev. Lett. 47:693(1981)

    Google Scholar 

  161. K. BinderZ. Phys. B 43:119(1981).

    Google Scholar 

  162. D. P. Landau, Phys. A 205:41(1994).

    Google Scholar 

  163. A. Werner, F. Schmid, M. Müller, and K. Binder, J. Chem. Phys. 107:8175(1997).

    Google Scholar 

  164. D. Ross, D. Bonn, and J. Meunier, Nature 400:737(1999)

    Google Scholar 

  165. D. Ross, D. Bonn, and J. MeunierJ. Chem. Phys. 114:2784(2001).

    Google Scholar 

  166. A. J. Liu and M. E. Fisher, Phys. A 156:35(1989).

    Google Scholar 

  167. M. Hasenbusch and K. Pinn, Phys. A 192:342(1993).

    Google Scholar 

  168. M. Müller and K. Binder, Macromolecules 31:8323(1998).

    Google Scholar 

  169. T. Kerle, J. Klein, and K. Binder, Phys. Rev. Lett. 77:1318(1996).

    Google Scholar 

  170. T. Kerle, J. Klein, and K. Binder, Eur. Phys. J. B 7:401(1999).

    Google Scholar 

  171. A. O. Parry, R. Evans, J. Phys. A 25:275(1992).

    Google Scholar 

  172. E. Montevecchi and J. O. Indekeu, Phys. Rev. B 62:14359(2000).

    Google Scholar 

  173. I. Carmesin and K. Kremer, Macromolecules 21:2819(1988).

    Google Scholar 

  174. H.-P. Deutsch and K. Binder, J. Chem. Phys. 95:2294(1991).

    Google Scholar 

  175. M. Müller, Macromol. Theory Simul. 8:343(1999).

    Google Scholar 

  176. M. Müller and F. Schmid, in Annual Reviews of Computational Physics VI, D. Stauffer, ed. (World Scientific, Singapore, 1999), p. 59.

    Google Scholar 

  177. A. Sariban and K. Binder, Macromolecules 21:711(1988).

    Google Scholar 

  178. H.-P. Deutsch and K. Binder, Macromolecules 25:6214(1992).

    Google Scholar 

  179. B. A. Berg, U. Hansmann, and T. Neuhaus, Z. Phys. B 90:229(1993).

    Google Scholar 

  180. R. Evans and U. Marini Bettolo Marconi, Phys. Rev. A 32:3817(1985).

    Google Scholar 

  181. N. B. Wilding and P. Nielaba, Phys. Rev. E 53:926(1996).

    Google Scholar 

  182. D. B. Abraham, Phys. Rev. Lett. 44:1165(1980)

    Google Scholar 

  183. T. M. Burkhardt, J. Phys. A: Math. Gen. 14, L63(1981)

    Google Scholar 

  184. J. T. Chalker, ibidJ. Phys. A: Math. Gen. 14:2431(1981)

    Google Scholar 

  185. S. T. Chui and J. D. Weeks, Phys. Rev. B 23:2438(1981)

    Google Scholar 

  186. H. Hilhorst and J. M. J. van Leeuwen, Phys. A 107:319(1981)

    Google Scholar 

  187. D. M. Kroll, Z. Phys. B 41:345(1981)

    Google Scholar 

  188. M. Vallade and J. Lajczerowicz, J. Phys. (Paris) 42:1505(1981).

    Google Scholar 

  189. D. B. Abraham and E. R. Smith, Phys. Rev. B 26:1480(1982)

    Google Scholar 

  190. D. B. Abraham and E. R. SmithJ. Statist. Phys. 43:621(1986).

    Google Scholar 

  191. M. E. Fisher, J. Statist. Phys. 34:667(1984).

    Google Scholar 

  192. E. V. Albano, K. Binder, D. W. Heermann, and W. Paul, J. Statist. Phys. 61:161(1990).

    Google Scholar 

  193. A. Maciolek, J. Phys. A: Math. Gen. 29:3837(1996).

    Google Scholar 

  194. E. V. Albano, K. Binder, and W. Paul, J. Phys.: Condens. Matter 12:2701(2000), and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, K., Landau, D. & Müller, M. Monte Carlo Studies of Wetting, Interface Localization and Capillary Condensation. Journal of Statistical Physics 110, 1411–1514 (2003). https://doi.org/10.1023/A:1022173600263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022173600263

Navigation