Skip to main content
Log in

Dynamical van der Waals Model of Glassy Behavior

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A model fluid system whose intermolecular forces consist of the short range part characterizing usual stable fluid and the long range part of Kac-type is considered. When the ratio of the force ranges is large enough, the system can be described by regarding the system having only short range interactions as a reference fluid treated as a continuum, on which long range forces acting among tiny fluid elements are superimposed. We discuss the glassy behavior of this model relating it to the mode coupling theory and using real replica theory. These theories lead to the two equations for non-ergodicity parameter which are totally different from each other. We argue that our model can be a basis for examining nature of the drastic approximations entering derivations of the mode coupling equations. We further explore the possibility of developing the dynamical real replica approach for our model system with the hope of providing a framework to cope with different time scales characterizing complex glassy behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Götze, Liquids, Freezing and Glass Transition, J. Hansen, D. Levesque, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1991)

    Google Scholar 

  2. W. Götze and L. Sjögren, Rep. Prog. Phys. 55:241(1992)

    Google Scholar 

  3. W. Götze and L. SjögrenTransport Theoret. Statist. Phys. 24:801(1995)

    Google Scholar 

  4. B. Kim and G. F. Mazenko, Advances in Chemical Physics 78:129(1990).

    Google Scholar 

  5. More recent developments can be found in the collection of papers in Transport Theoret. Statist. Phys. 24, Nos 6–8 (1995) and the conference proceedings such as J. Non-cryst. Solids 235–237 (1998) and J. Phys. Condes. Matter A, 10 (1999); ibid. 12:6295–6881 (2000).

  6. W. van Megen and S. M. Underwood, Phys. Rev. E 49:4206(1994).

    Google Scholar 

  7. A. M. Meller, T. Gisler, D. A. Weitz, and J. Stavans, Langmuir 15:1918(1999).

    Google Scholar 

  8. K. Kawasaki and B. Kim, Phys. Rev. Lett. 86:3582(2001).

    Google Scholar 

  9. B. Kim and K. Kawasaki J. Phys. Condens. Matter 14:1627(2002)

    Google Scholar 

  10. K. Kawasaki and B. Kim J. Phys. Condens. Matter 14:2265(2002).

    Google Scholar 

  11. L. Landau and E. Lifshitz, Fluid Mechanics, 1st Ed. (Pergamon, Oxford, 1959).

    Google Scholar 

  12. H. Westfahl, Jr., J. Schmalian, and P. G. Wolynes, Phys. Rev. B 64:174203–1(2001).

    Google Scholar 

  13. W. Klein, H. Gould, R. A. Ramos, I. Clejan, and A. I. Mel'cuk, Phys. A 205:738(1994).

    Google Scholar 

  14. D. Kivelson, G. Tarjus, M. Grousson, G. Tarjus, and P. Viot, Phys. A 225:129(1996), cond-mat/0111305.

    Google Scholar 

  15. S. Wu, H. Westfahl, Jr., J. Schmalian, and P. G. Wolynes, cond-mat/0105308.

  16. K. Kawasaki, Progr. Theoret. Phys. 41:1190(1969). We present here a corrected version of Eq. (2.1) of this paper.

    Google Scholar 

  17. E. Donth, The Glass Transition (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  18. M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4:216and 229 (1963).

    Google Scholar 

  19. W. van Saarloos, D. Bedeaux, and P. Mazur, Phys. A, 110:147(1982).

    Google Scholar 

  20. D. N. Zubarev and V. G. Morozov, Phys. A, 120:411(1983)

    Google Scholar 

  21. V. G. Morozov, Phys. A, 126:443(1984)

    Google Scholar 

  22. B. Kim and G. Mazenko, J. Statist. Phys. 64:631(1991).

    Google Scholar 

  23. N. G. van Kampen, Phys. Rev. A 135:362(1964).

    Google Scholar 

  24. J. L. Lebowitz and O. Penrose, J. Math. Phys, Phys. Rev. A 135:362(1964).

    Google Scholar 

  25. N. Grewe and W. Klein J. Math. Phys. 18:1729, 1735 (1977).

    Google Scholar 

  26. U. Bentzelius, W. Götze, and S. Sjölander, J. Phys. C 17:5915(1984)

    Google Scholar 

  27. E. Leutheusser, Phys. Rev. A 29:2745(1984).

    Google Scholar 

  28. K. Kawasaki, Recent Res. Devel. Statist. Phys. 1:41(2000).

    Google Scholar 

  29. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd Ed. (Academic Press, London, 1986). Often referred to as HM.

    Google Scholar 

  30. E. Zaccarelli, G. Foffi, F. Sciortino, P. Tartaglia, and K. A. Dawson, Europhys. Lett. 55:157(2001).

    Google Scholar 

  31. H. Mori, Progr. Theoret. Phys. 33:424(1965).

    Google Scholar 

  32. R. Zwanzig, J. Chem. Phys. 33:1338(1960).

    Google Scholar 

  33. J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6:1282(1965).

    Google Scholar 

  34. R. Monasson, Phys. Rev. Lett. 75:2847–2850 (1995).

    Google Scholar 

  35. M. Mézard and G. Parisi, Phys. Rev. Lett. 82:747(1999).

    Google Scholar 

  36. A. J. Bray, Phys. Rev. Lett. 32:1413(1974).

    Google Scholar 

  37. M. Mézard and R. Monasson, Phys. Rev. B 50: 7199(1994).

    Google Scholar 

  38. R. Kraichnan, J. Fluid Mech. 5:497(1959).

    Google Scholar 

  39. S. Gauthier, M.-E. Brachet, and J.-D. Fournier, J. Phys. A: Math. Gen. 14: 2969(1981).

    Google Scholar 

  40. T. R. Kirkpatrick and D. Thirumalai, J. Phys. A: Math. Gen. 22: L149(1989).

    Google Scholar 

  41. K. Binder and A. P. Young, Rev. Mod. Phys. 58: 801(1986)

    Google Scholar 

  42. M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond, (World Scientific, Singapore, 1987)

    Google Scholar 

  43. K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  44. T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19:2772(1979).

    Google Scholar 

  45. C. De Dominicis, Phys. Rev. B 18:4913(1978).

    Google Scholar 

  46. P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8:423(1973)

    Google Scholar 

  47. C. De Dominicis and L. Peliti, Phys. Rev. B 18:353(1978)

    Google Scholar 

  48. R. Bausch, H. K. Janssen and H. Wagner, Zeit. Phys. B 24:113(1976).

    Google Scholar 

  49. A. Houghton, S. Jain, and A. P. Young, Phys. Rev. B 28:2630(1983)

    Google Scholar 

  50. D. Thirumalai and T. R. Kirkpatrick, Phys. Rev. B 38:4881(1988).

    Google Scholar 

  51. K. Kawasaki, Phys. A 208:35(1994).

    Google Scholar 

  52. K. Kawasaki and S. Miyazima, Zeits f. Phys. B, 103:423(1997).

    Google Scholar 

  53. M. Mézard and G. Parisi, J. Phys.: Conddens. Matter 12:6655(2000).

    Google Scholar 

  54. J. Schmalian, H. Westfahl, Jr., and P. Wolynes, Int. J. Mod. Phys. B 15:3292(2001).

    Google Scholar 

  55. J. Jäckle, in Disorder Effects on Relaxational Processes, R. Richert and A. Blumen, eds. (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  56. A. Cavagna, Europhys. Lett. 53:490(2001).

    Google Scholar 

  57. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1996).

    Google Scholar 

  58. J.-P. Bouchaud, L. Cugliandolo, J. Kurchan, and M. Mézard, Phys. A 226:243(1996).

    Google Scholar 

  59. M. Campellone and J.-P. Bouchaud, J. Phys. A: Math. Gen. 30:3333(1997).

    Google Scholar 

  60. K.-K. Loh, K. Kawasaki, A. R. Bishop, T. Lookman, A. Saxena, J. Schmalian, and Z. Nussinov, manuscript under preparation (2002).

  61. A. Barrat, R. Burioni, and M. Mézard, J. Phys. A: Math. Gen. 29:1311(2000).

    Google Scholar 

  62. K. Dahmen and J. P. Sethna, Phys. Rev. B 53: 14872(1996).

    Google Scholar 

  63. S. Franz and G. Parisi, J. Phys.: Condens. Matter 12:6335(2000).

    Google Scholar 

  64. H. Westfahl, Jr., J. Schmalian, and P. G. Wolynes, Dynamical Mean Field Theory for Self-Generated Quantum Glasses (preprint, 2001).

  65. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28:784(1983).

    Google Scholar 

  66. N. G. van Kampen, Phys. Reports 124:69(1985).

    Google Scholar 

  67. B. Mihaila, J. F. Dawson, and F. Cooper, Phys. Rev. D 63:096003–1(2001).

    Google Scholar 

  68. H. C. Andersen and D. Chandler, J. Chem. Phys. 53:547(1970).

    Google Scholar 

  69. J. L. Lebowitz, A. Mazel, and E. Presutti, cond-mat/9809144 and cond-mat/9809145.

  70. A. I. Mel'cuk, R. A. Ramos, H. Gould, W. Klein, and R. D. Mountain, Phys. Rev. Lett. 75:2522(1995)

    Google Scholar 

  71. G. Johnson, A. I. Mel'cuk, H. Gould, W. Klein, and R. D. Mountain, Phys. Rev. E 57:5707(1998)

    Google Scholar 

  72. G. Johnson, Ph.D. thesis, Clark University (2001).

  73. W. Klein (private communication).

  74. Z. Nussinov, J. Rudnick, S. A. Kivelson, and L. N. Chayes, Phys. Rev. Lett. 83:472(1999).

    Google Scholar 

  75. V. G. Rostiashvilli and T. A. Vilgis, Phys. Rev. E. 62:1560(2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, K. Dynamical van der Waals Model of Glassy Behavior. Journal of Statistical Physics 110, 1249–1304 (2003). https://doi.org/10.1023/A:1022161330306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022161330306

Navigation