Skip to main content
Log in

Computations of Dendrites in 3-D and Comparison with Microgravity Experiments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The phase field model is used to compute numerically the temporal evolution of the interface for solidification of a single needle crystal of succinonitrile (SCN) in a three dimensional cylindrical domain with conditions satisfying microgravity experiments. The numerical results for the tip velocity are (i) consistent with the experiments, (ii) compatible with the experimental conclusion that tip velocity does not increase for larger anisotropy (e.g., for pivalic acid), (iii) different for 3D versus 2D by a factor of approximately 1.76, (iv) strongly dependent on physical value of the kinetic coefficient in the model. Also, as indicated by theory and the laboratory experiments, the results obtained for single needle crystal show that the growth velocity approaches a constant value in large time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. P. Ivantsov, Temperature field around spherical, cylindrical and needle-shaped crystals which grow in supercooled melt, Dokl. Akad. Nauk USSR 58:567(1947)

    Google Scholar 

  2. E. Ben, Jacob, N. Goldenfeld, B. Kotliar, and J. Langer, Pattern selection in dendritic solidification, Phys. Rev. Lett. 53:2110(1984)

    Google Scholar 

  3. D. A. Kessler, J. Koplik, and H. Levine, Geometric models of interface evolution. II Numerical Simulation, Phys. Rev. A 30:3161(1984)

    Google Scholar 

  4. D. A. Kessler, J. Koplik, and H. Levine, Pattern selection in fingered growth phenomena, Adv. Phys. 37:255(1988)

    Google Scholar 

  5. E. Brener and V. I. Melnikov, Pattern selection in two-dimensional dendritic growth, Adv. Phys. 40:53(1991)

    Google Scholar 

  6. Y. Pomeau and M. B. Amar, Solids Far from Equilibrium, C. Godreche, ed. (Cambridge University Press, Cambridge, England, 1991), p. 365

    Google Scholar 

  7. G. Caginalp, The limiting behavior of a free boundary in the phase field model (Carnegie-Mellon Research Report Number 82–5), 1982).

  8. G. Caginalp, Lecture Notes in Physics, Applications of Field Theory to Statistical Mechanics, L. Garrido, ed. (Springer, Berlin, 1984), p. 216

    Google Scholar 

  9. R. Almgren, Second-order phase field asymptotics for unequal conductivities, SIAM J. Appl. Math. 59:2086(1999)

    Google Scholar 

  10. See also, S. Hariharan and G. W. Young, Comparison of asymptotic solutions of a phase-field model to a sharp-interface model, SIAM J. Appl. Math. 62:244(2001)

    Google Scholar 

  11. Y. Kim, N. Provatas, N. Goldenfeld, and J. Dantzig, Universal dynamics of phase-field models for dendrite growth, Phys. Rev. E 59:2546(1999)

    Google Scholar 

  12. G. Caginalp, Material instabilities in continuum problems and related mathematical problems, Heriot-Watt Symposium (1985–1986), J. Ball, ed. (Oxford Science Publications, Oxford, England, 1988), p. 35

    Google Scholar 

  13. G. Caginalp, An analysis of a phase field mdel of a free boundary, Arch. Rational Mech. Anal. 92:205(1986)

    Google Scholar 

  14. G. Caginalp and E. A. Socolovsky, Efficient computation of a sharp interface by spreading via phase field methods, Appl. Math. Lett. 2:117(1989)

    Google Scholar 

  15. T. Abel, E. Brener, and H. M. Krumbhaar. Three-dimensional growth morphologies in diffusion-controlled channel growth, Phys. Rev. E 55:7789(1997)

    Google Scholar 

  16. A. Karma and W-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57:4323(1998)

    Google Scholar 

  17. A. Karma, Y. H. Lee, and M. Plapp, Three-dimensional dendrite-tip morphology at low undercooling, Phys. Rev. E 61:3996(2000)

    Google Scholar 

  18. N. Provatas, N. Goldenfeld, J. Dandtzig, J. C. Lacombe, A. Lupelescu, M. B. Koss, M. E. Glicksman, and R. Almgreen, Crossover scaling in dendritic evolution at low undercooling, Phys. Rev. Lett. 82:4496(1999)

    Google Scholar 

  19. J. A. Warner, R. Kobayahsi, and W. C. Carter, Modeling grain boundaries using a phase-field technique, J. Cryst. Growth 211:18(2000)

    Google Scholar 

  20. N. Provatas, N. Goldenfeld, and J. Dandtzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structure, J. Comp. Phys 148:265 (1999)

    Google Scholar 

  21. S-L. Wang, R. F. Sekerka, A. A. Wheeler, B. F. Murray, S. R. Coriell, J. Brown, and G. B. McFAdden, Thermodynamically-consistent phase-field models for soldification, Phys. D 69:189(1993)

    Google Scholar 

  22. L. L. Regel, W. R. Wilcox, D. Popov, and F. C. Li, Influence of freezing rate oscillations and convection on eutectic microstructure, Acta Astronautica 48:101(2001)

    Google Scholar 

  23. G. Caginalp and X. Chen, On the Evolution of Phase Boundaries, E. Gurtin and G. McFadden, eds. (Springer-Verlag, New-York, Vol. 1, 1992)

    Google Scholar 

  24. M. E. Glicksman, M. B. Koss, and E. A. Winsa, Dendritic growth velocities in microgravity, Phys. Rev. Lett. 73:573(1994)

    Google Scholar 

  25. M. E. Glicksman and N. B. Singh, Effects of crystal-melt interfacial energy anisotropy on dendritic morphology and growth kinetics, J. Cryst. Growth 98:207(1989)

    Google Scholar 

  26. G. Caginalp, The role of microscopic anisotropy in macroscopic behavior of a phase boundary, Ann. Phys. 172:136(1986)

    Google Scholar 

  27. G. D. Smith, Numerical Solution of PDE (Oxford Applied Mathematics and Computing Science Series, 1985)

  28. M. E. Glicksman, R. J. Schaefer, and J. D. Ayers, Dendritic growth-a test of theory, Met. Mat. Trans. A 7:1747(1976)

    Google Scholar 

  29. D. R. Kincad, J. R. Respess, D. M. Young, and R. Grimes, Itpack2c (University of Texas, Austin, 78712 August 1979)

  30. M. Fabri and V. R Voller, The phase-field method in limit: A comparison between model potentials, J. Comp. Physics 130:256(1997)

    Google Scholar 

  31. R. Sekerka, Optimum stability conjecture for the role of interface kinetics in selection of dendrite operating state, J. Cryst. Growth 154:377(1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altundas, Y.B., Caginalp, G. Computations of Dendrites in 3-D and Comparison with Microgravity Experiments. Journal of Statistical Physics 110, 1055–1067 (2003). https://doi.org/10.1023/A:1022140725763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022140725763

Navigation