Skip to main content
Log in

Phase Separation of Penetrable Core Mixtures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A two-component system of penetrable particles interacting via a gaussian core potential is considered, which may serve as a crude model for binary polymer solutions. The pair structure and thermodynamic properties are calculated within the random phase approximation (RPA) and the hypernetted chain (HNC) integral equation. The analytical RPA predictions are in semi-quantitative agreement with the numerical solutions of the HNC approximation, which itself is very accurate for gaussian core systems. A fluid-fluid phase separation is predicted to occur for a broad range of potential parameters. The pair structure exhibits a nontrivial clustering behaviour of the minority component. Similiar conclusions hold for the related model of parabolic core mixtures, which is frequently used in dissipative particle dynamics (DPD) simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Rowlinson and F. Swinton, Liquids and Liquid Mixtures, 3rd edn. (Butterworths, London, 1982).

    Google Scholar 

  2. M. Doi, Introduction to Polymer Physics (Oxford University Press, Oxford, 1995).

    Google Scholar 

  3. D. Broseta, L. Leibler, and J.-F. Joanny, Macromolecules 20:1935(1987).

    Google Scholar 

  4. J. S. van Duijneveldt, A. W. Heinen, and H. N. W. Lekkerkerker, Europhys. Lett. 21:369(1993)

    Google Scholar 

  5. A. D. Dinsmore, A. G. Yodh, and D. J. Pine, Phys. Rev. E 52:4045(1995)

    Google Scholar 

  6. A. Imhof and J. K. G. Dhont, Phys. Rev. Lett. 75:1662(1995).

    Google Scholar 

  7. S. M. Ilett, A. Orrock, W. C. K. Poon, and P. N. Pusey, Phys. Rev. E 51:1344(1995).

    Google Scholar 

  8. S. Asakura and F. Oosawa, J. Polym. Sci., Polym. Symp. 33:183(1958)

    Google Scholar 

  9. A. Vrij, Pure Appl. Chem. 48:471(1976).

    Google Scholar 

  10. T. Biben and J. P. Hansen, Phys. Rev. Lett. 66:2215(1991)

    Google Scholar 

  11. T. Biben and J. P. HansenJ. Phys. Cond. Matt. 3:F65(1991).

    Google Scholar 

  12. M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. E 59:5744(1999).

    Google Scholar 

  13. A. A. Louis, R. Finken, and J. P. Hansen, Phys. Rev. E 61:R1028(2000).

    Google Scholar 

  14. A. Y. Grosberg, P. G. Khalatur, and A. R. Khoklov, Makromol. Chem. 3:709(1982).

    Google Scholar 

  15. B. Krüger, L. Schäfer, and A. Baumgärtner, J. Phys. (Paris) 50:319(1989).

    Google Scholar 

  16. J. Dautenhahn and C. K. Hall, Macromolecules 27:5399(1994).

    Google Scholar 

  17. A. A. Louis, P. G. Bolhuis, J. P. Hansen, and E. J. Meijer, Phys. Rev. Lett. 85:2522(2000)

    Google Scholar 

  18. P. G. Bolhuis, A. A. Louis, J. P. Hansen, and E. J. Meijer, J. Chem. Phys. 114:4296(2001).

    Google Scholar 

  19. T. A. Witten and P. A. Pincus, Macromolecules 19:2509(1986)

    Google Scholar 

  20. C. N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgauer, and D. Richter, Phys. Rev. Lett. 80:4450(1998).

    Google Scholar 

  21. C. N. Likos, M. Schmidt, H. Löwen, M. Ballauff, D. Pötschke, and P. Lindner, Macromolecules 34:2914(2000).

    Google Scholar 

  22. C. N. Likos, M. Watzlawek, and H. Löwen, Phys. Rev. E 58:3135(1998).

    Google Scholar 

  23. A. Lang, C. N. Likos, M. Watzlawek, and H. Löwen, J. Phys. Cond. Matter 12:5087(2000)

    Google Scholar 

  24. C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys. Rev. E 63:1206(2001).

    Google Scholar 

  25. A. A. Louis, P. G. Bolhuis, and J. P. Hansen, Phys. Rev. E 62:7961(2000).

    Google Scholar 

  26. A. J. Archer and R. Evans, Phys. Rev. E 64:41501(2001).

    Google Scholar 

  27. F. H. Stillinger, J. Chem. Phys. 65:3968(1976).

    Google Scholar 

  28. See, e.g., S. N. Lai and M. E. Fisher, Mol. Phys. 88:1373(1996).

    Google Scholar 

  29. P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19:155(1992).

    Google Scholar 

  30. R. D. Groot and P. B. Warren, J. Chem. Phys. 107:4423(1997).

    Google Scholar 

  31. C. M. Wijmans, B. Smit, and R. D. Groot, J. Chem. Phys. 114:7644(2001).

    Google Scholar 

  32. See, e.g., J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, London, 1986).

    Google Scholar 

  33. L. Verlet and D. Levesque, Physica 28:1124(1962).

    Google Scholar 

  34. L. Belloni, J. Chem. Phys. 98:8080(1993).

    Google Scholar 

  35. S. Fishman and M. E. Fisher, Physica A 108:1(1981).

    Google Scholar 

  36. P. G. Bolhuis, A. A. Louis, and J.-P. Hansen, Phys. Rev. E 64:021801(2001).

    Google Scholar 

  37. P. G. Bolhuis and A. A. Louis, Macromolecules 35:1860(2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finken, R., Hansen, JP. & Louis, A.A. Phase Separation of Penetrable Core Mixtures. Journal of Statistical Physics 110, 1015–1037 (2003). https://doi.org/10.1023/A:1022136624854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022136624854

Navigation