Skip to main content
Log in

The Statistical Mechanics of Semiflexible Equilibrium Polymers

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give an overview of studies of models for semiflexible, equilibrium polymers with special emphasis on our work on both lattice and continuum models for such systems. We show, principally by Monte Carlo simulations, that, once monomers self assemble to form polymers, their semiflexibility leads to nematic phases at low temperatures. Attractive wall potentials encourage the adsorption of these equilibrium polymers on surfaces. Rapid cooling leads to the formation of glasses with entangled polymers. Shear promotes nematic ordering, but, at high shear rates, this tendency decreases since the equilibrium polymers are torn apart. A version of our model in which the polymers are directed shows the polymer analog of bosonic Mott-insulating, mass-density-wave, and supersolid phases. We give a brief comparison of our work with other studies and also explore the experimental implications of our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. E. Cates, J. Phys. Condens. Mat. 8:9167(1996).

    Google Scholar 

  2. H. Rehage and H. Hoffman, Mol. Phys. 74:933(1991).

    Google Scholar 

  3. L. Magid, J. Phys. Chem. B 102:4064(1998).

    Google Scholar 

  4. S. V. G. Menon, P. S. Goyal, B. A. Dasanacharya, S. K. Paranjpe, R. V. Mehta, and R. V. Upadhyay, Physica B 213:604(1996).

    Google Scholar 

  5. J. Santhanalakshmi, G. Shanthanalaksmi, V. K. Aswal, and P. S. Goyal, Proc. Indian Acad. Sci. (Chem Sci.) 113:55(2001).

    Google Scholar 

  6. J. Narayanan, C. Manohar, and E. Mendes, J. Chem. Phys. 100:18524(1996).

    Google Scholar 

  7. J. Narayanan, W. Urbach, D. Langevin, C. Manohar, and R. Zana, Phys. Rev. Lett. 81:228(1998)

    Google Scholar 

  8. J. Naranayanan, C. Manohar, D. Langevin, and W. Urbach, Langmuir 13:398(1997).

    Google Scholar 

  9. R. Oda, J. Narayanan, P. A. Hassan, C. Manohar, R. A. Salkar, F. Kern, and S. J. Candau, Langmuir 14:4364(1998).

    Google Scholar 

  10. A. K. Sood, R. Bandyopadhyay, and G. Basappa, Pramana, J. Physics 53:223(1999).

    Google Scholar 

  11. R. Badyopadhyay, G. Basappa, and A. K. Sood, Phys. Rev. Lett. 84:2022(2000).

    Google Scholar 

  12. R. L. Scott, J. Phys. Chem. 69:261(1965)

    Google Scholar 

  13. R. F. Bacon and R. Fanelli, J. Amer. Chem. Soc. 65:639(1943).

    Google Scholar 

  14. F. Livolani and Y. Boulingad, J. Phys. (Paris) 47:1813(1986)

    Google Scholar 

  15. R. Podgornik, D. C. Rau, and V. A. Parsegian, Macromolecules 22:1780(1989).

    Google Scholar 

  16. K. M. Zheng and S. C. Greer, Macromolecules 25:6128(1992).

    Google Scholar 

  17. K. M. Zheng, S. C. Greer, L. Rene Corrales, and J. Ruiz Garcia, J. Chem Phys. 98:9873(1993).

    Google Scholar 

  18. A. P. Andrews, K. P. Andrews, S. C. Greer, F. Boue, and P. Pfeuty, Macromolecules 27:3902(1994).

    Google Scholar 

  19. S. Sarkar Das, A. P. Andrews, and S. C. Greer, J. Chem. Phys. 102:2951(1995).

    Google Scholar 

  20. J. Zhuang, A. P. Andrews, and S. C. Greer, J. Chem. Phys. 107:4705(1997).

    Google Scholar 

  21. A. V. Tobolsky and A. Eisenberg, J. Colloid Sci. 17:49(1962).

    Google Scholar 

  22. J. C. Wheeler, S. J. Kennedy, and P. Pfeuty, Phys. Rev. Lett., 45:1748(1980)

    Google Scholar 

  23. J. C. Wheeler, S. J. Kennedy, and P. Pfeuty, J. Chem. Phys. 78:954(1983).

    Google Scholar 

  24. J. Ruiz-Garcia, Ph.D. dissertation (University of Maryland, College Park, 1989).

    Google Scholar 

  25. J.-F. Berret, D. C. Roux, G. Porte, and P. Lindner, Europhys. Lett. 32:137(1995).

    Google Scholar 

  26. E. Fischer and P. T. Callaghan, Phys. Rev. E 64:11501(2001).

    Google Scholar 

  27. H. Rehage and H. J. Hoffman, J. Phys. Chem. 92:4712(1988).

    Google Scholar 

  28. J. F. Berret, Langmuir 13:2227(1997).

    Google Scholar 

  29. P. A. Hassan, B. S. Valaulikar, C. Manohar, F. Kern, L. Bourdieu, and S. J. Candau, Langmuir 18:4350(1996).

    Google Scholar 

  30. M. E. Cates and S. J. Candau, J. Phys. Condens. Mat. 2:6869(1990).

    Google Scholar 

  31. P. Mukerjee, J. Phys. Chem. 76:565(1972).

    Google Scholar 

  32. M. E. Cates, Macromolecules 20:2289(1987).

    Google Scholar 

  33. J. P. Wittmer, A. Milchev, and M. E. Cates, J. Chem. Phys. 109:834(1998).

    Google Scholar 

  34. P. van der Schoot, J. Chem Phys. 104:11301996.

    Google Scholar 

  35. P. van der Schoot and M. E. Cates, Europhys. Lett. 25:515(1994).

    Google Scholar 

  36. A. Chatterji and R. Pandit, Europhys. Lett. 54:213(2001).

    Google Scholar 

  37. A. Chatterji and R. Pandit, To be submitted, (2002).

  38. J. P. Wittmer, A. Milchev, and M. E. Cates, Europhys. Lett. 41:291(1998).

    Google Scholar 

  39. A. Milchev, W. Paul, and K. Binder, J. Chem. Phys. 99:4786(1993).

    Google Scholar 

  40. A. Milchev, J. P. Wittmer, and D. P. Landau, Euro. Phys. J. B 12:241(1999).

    Google Scholar 

  41. A. Milchev, J. P. Wittmer, and D. P. Landau, Phys. Rev. E 61:2959(2000).

    Google Scholar 

  42. I. Carmesin and K. Kremer, Macromolecules 21:2819(1998).

    Google Scholar 

  43. Y. Rouault, J. Phys. II France 6:1301(1996).

    Google Scholar 

  44. Y. Rouault and A. Milchev, Europhys. Lett. 33:341(1996).

    Google Scholar 

  45. G. F. Tuthill and M. V. Jaric, Phys. Rev. B 31:5(1985)

    Google Scholar 

  46. G. F. Tuthill and M. V. Jaric, Phys. Rev. B 31:2981(1985).

    Google Scholar 

  47. A. Milchev and D. P. Landau, Phys. Rev. E 52:6431(1995).

    Google Scholar 

  48. G. I. Menon, R. Pandit, and M. Barma, Europhys. Lett. 24:253(1993).

    Google Scholar 

  49. G. I. Menon and R. Pandit, Phys. Rev. Lett. 75:4638(1995).

    Google Scholar 

  50. G. I. Menon and R. Pandit, Phys. Rev. E 59:787(1999).

    Google Scholar 

  51. I. Geroff, A. Milchev, K. Binder, and W. Paul, J. Chem. Phys. 98:6526(1993).

    Google Scholar 

  52. F. Affouard, M. Kroger, and S. Hess, Phys. Rev. E 54:5178(1996).

    Google Scholar 

  53. Y. Rouault, J. Chem. Phys. 111:9859(1999).

    Google Scholar 

  54. M. Dijkstra and D. Frenkel, Phys. Rev. E 51:5891(1995).

    Google Scholar 

  55. A. Milchev, Y. Rouault, and D. P. Landau, Phys. Rev. E 56:1946(1997).

    Google Scholar 

  56. R. D. Kamien and G. S. Grest, Phys. Rev. E 55:1197(1997).

    Google Scholar 

  57. S. J. Kennedy and J. C. Wheeler, J. Chem Phys 78:953(1983).

    Google Scholar 

  58. J. C. Wheeler, Phys. Rev. Lett. 53:174(1984)

    Google Scholar 

  59. J. C. Wheeler, J. Chem Phys 81:3635(1984).

    Google Scholar 

  60. S. J. Kennedy and J. C. Wheeler, J. Chem. Phys. 78:1523(1983).

    Google Scholar 

  61. R. Petschek, P. Pfeuty, and J. C. Wheeler, Phys. Rev. A 34:2391(1986)

    Google Scholar 

  62. J. P. Wittmer, P. van der Schoot, A. Milchev, and J. L. Barrat, J. Chem. Phys. 113:6992(2000)

    Google Scholar 

  63. A. Milchev, J. P. Wittmer, P. van der Schoot, and D. Landau, Europhys. Lett. 54:58(2001).

    Google Scholar 

  64. P. J. Flory, Proc. R. Soc. London, Ser A 234:60(1956)

    Google Scholar 

  65. P. J. Flory, Proc. R. Soc. London, Ser A 234:73(1956).

    Google Scholar 

  66. A. Baumgartner, J. Phys. A 17:L971(1984)

    Google Scholar 

  67. A. Baumgartner, J. Chem. Phys. 84:13(1986)

    Google Scholar 

  68. A. Baumgartner and D. Y. Yoon, J. Chem. Phys. 79:521(1983).

    Google Scholar 

  69. P. D. Gujrati and M. Goldstein, J. Chem. Phys. 74:2596(1981).

    Google Scholar 

  70. S. Jain and D. R. Nelson, Phys. Rev. E 61:1599(2000).

    Google Scholar 

  71. T. D. Kuhner, S. R. White, and H. Monien, Phys. Rev. B 61:12474(2000); T. D. Kuhner and H. Monien, Phys. Rev. B 58:14741(1998); R. V. Pai and R. Pandit, to be published.

    Google Scholar 

  72. D. R. Nelson and H. S. Seung, Phys. Rev. B 39:9153(1989).

    Google Scholar 

  73. R. D. Kamien, P. Le Doussal, and D. R. Nelson, Phys. Rev. A 45:8727(1992).

    Google Scholar 

  74. D. M. Ceperley and E. L. Pollock, Phys. Rev. B 30:2555(1984); W. Krauth and N. Trivedi, Europhys. Lett. 14:627(1991); D. M. Ceperley, Rev. Mod. Phys. 67 (1995).

    Google Scholar 

  75. W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett. 67:2307(1991).

    Google Scholar 

  76. D. R. Nelson and A. Stern, Proceedings XIV Sitges Conference, Complex Behavior of Glassy Systems, June 10–14 (1996), N. Rubi, ed., cond-mat 9701001.

  77. E. H. Lieb and F. Y. Wu, in Phase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972), pp. 331–490.

    Google Scholar 

  78. R. Pandit, M. Schick, and M. Wortis, Phys. Rev. B 26:5112(1982).

    Google Scholar 

  79. If the monomers interact with a substrate via a Lennard-Jones potential, then a lateral average over a semi-infinite, planar substrate yields a monomer-substrate potential of the form given in Eq. (3). See, e.g., R. Pandit in Recent Advances in Theoretical Physics, R. Ramachandran, ed. (World Scientific, Singapore, 1985), pp. 302–342

    Google Scholar 

  80. M. Wortis, R. Pandit, and M. Schick, in Melting Localization and Chaos, R. K. Kalia and P. Vashishta, eds. (North-Holland, New York, 1982), pp. 13–27

    Google Scholar 

  81. C. Ebner and W. F. Saam, Phys. Rev. Lett. 38:1486(1977).

    Google Scholar 

  82. U. C. Tauber and D. R. Nelson, Phys. Rep. 289:157(1997).

    Google Scholar 

  83. P. G. de Gennes, Eur. Phys. J. E 2:201(2000)

    Google Scholar 

  84. K. Binder, Eur. Phys. J. E 2:204(2000)

    Google Scholar 

  85. R. A. L. Jones, Eur. Phys. J. E 2:205(2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterji, A., Pandit, R. The Statistical Mechanics of Semiflexible Equilibrium Polymers. Journal of Statistical Physics 110, 1219–1248 (2003). https://doi.org/10.1023/A:1022109313467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022109313467

Navigation