Skip to main content
Log in

Molecular Motor Cycles: From Ratchets to Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Molecular motor cycles are studied in the framework of stochastic ratchets in which the motor moves along a 1-dimensional track, can attain M internal states, and can undergo transitions between these levels at K spatial positions. These ratchets can be mapped onto a stochastic network of KM discrete states. The network is governed by a Master equation, fulfills a vertex rule, and satisfies detailed balance in the absence of enzymatic activity and external force. Any pathway of the motor cycle which leads to a forward or backward step of the motor corresponds to a certain sequence of transitions spanning this network. The dependence of the motor velocity on the transition rates can be determined for arbitrary values of K and M and exhibits some simple and universal features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Lipowsky and T. Harms, Eur. Biophys. J. 29:542(2000).

    Google Scholar 

  2. R. Lipowsky, Phys. Rev. Lett. 85:4401(2000).

    Google Scholar 

  3. R. Lipowsky, in Stochastic Processes in Physics, Chemistry and Biology, Lecture Notes in Physics, Vol. 557, J. A. Freund and T. Pöschel, eds. (Springer, Heidelberg, 2000), pp. 21–31.

    Google Scholar 

  4. N. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).

    Google Scholar 

  5. R. Astumian and M. Bier, Phys. Rev. Lett. 72:1766(1994).

    Google Scholar 

  6. J. Prost, J.-F. Chauwin, L. Peliti, and A. Ajdari, Phys. Rev. Lett. 72:2652(1994).

    Google Scholar 

  7. T. Harms and R. Lipowsky, Phys. Rev. Lett. 79:2895(1997).

    Google Scholar 

  8. F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69:1269(1997).

    Google Scholar 

  9. A. Parmeggiani, F. Jülicher, A. Ajdari, and J. Prost, Phys. Rev. E 60:2127(1999).

    Google Scholar 

  10. J. Howard, A. J. Hudspeth, and R. D. Vale, Nature 342:154(1989).

    Google Scholar 

  11. K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, Nature 365:721(1993).

    Google Scholar 

  12. K. Svoboda and S. Block, Cell 77:773(1994).

    Google Scholar 

  13. M. J. Schnitzer and S. M. Block, Nature 388:386(1997).

    Google Scholar 

  14. W. Hua, E. C. Young, M. L. Fleming, and J. Gelles, Nature 388:390(1997).

    Google Scholar 

  15. W. O. Hancock and J. Howard, J. Cell Biol. 140:1395(1998).

    Google Scholar 

  16. M. Thormählen et al., J. Mol. Biol. 275:795(1998).

    Google Scholar 

  17. S. Gilbert, M. Moyer, and K. Johnson, Biochemistry 37:792(1998).

    Google Scholar 

  18. K. Visscher, M. J. Schnitzer, and S. M. Block, Nature 400:184(1999).

    Google Scholar 

  19. Y. Okada and N. Hirokawa, Science 283:1152(1999).

    Google Scholar 

  20. A. Mehta et al., Nature 400:590(1999).

    Google Scholar 

  21. M. Rief et al., Proc. Nat. Acad. Sci. USA 97:9482(2000).

    Google Scholar 

  22. A. Mehta, J. Cell Sci. 114:1981(2001).

    Google Scholar 

  23. Z. Wang and M. Sheetz, Biophys. J. 78:1955(2000).

    Google Scholar 

  24. S. King, Biochimica Biophysica Acta-Mol. Cell Res. 1496:60(2000).

    Google Scholar 

  25. E. Hirakawa, H. Higuchi, and Y. Toyoshima, Proc. Nat. Acad. Sci. USA 97:2533(2000).

    Google Scholar 

  26. M. E. Fisher and A. B. Kolomeisky, Proc. Natl. Acad. Sci. USA 98:7748(2001).

    Google Scholar 

  27. A. Kolomeisky and B. Widom, J. Stat. Phys. 93:633(1998).

    Google Scholar 

  28. M. E. Fisher and A. Kolomeisky, Proc. Natl. Acad. Sci. USA 96:6597(1999).

    Google Scholar 

  29. N. Jaster and R. Lipowsky, to be published.

  30. D. Keller and C. Bustamante, Biophys. J. 78:541(2000).

    Google Scholar 

  31. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer Verlag, Berlin, 1989).

    Google Scholar 

  32. A. Ajdari, Europhys. Lett. 31:69(1995).

    Google Scholar 

  33. R. Lipowsky, S. Klumpp, and T. Nieuwenhuizen, Phys. Rev. Lett. 87:108101/1(2001).

    Google Scholar 

  34. R. Lipowsky, in Biological Physics 2000, V. Sa-yakanit, L. Matsson, and H. Frauenfelder, eds. (World Scientific, New Jersey, 2001), pp. 41–56.

    Google Scholar 

  35. T. Nieuwenhuizen, S. Klumpp, and R. Lipowsky, Europhys. Lett. 58:468(2002).

    Google Scholar 

  36. W. D. Wallis, A Beginner's Guide to Graph Theory (Birkhäuser, Boston, 2000).

    Google Scholar 

  37. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, first edn. (Sinauer, New York, 2001).

    Google Scholar 

  38. D. Hackney, Nature 377:448(1995).

    Google Scholar 

  39. A. Lehninger, D. Nelson, and M. Cox, Principles of Biochemistry, 2nd edn. (Worth Publishers, New York, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipowsky, R., Jaster, N. Molecular Motor Cycles: From Ratchets to Networks. Journal of Statistical Physics 110, 1141–1167 (2003). https://doi.org/10.1023/A:1022101011650

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022101011650

Navigation