Skip to main content
Log in

Dobrushin Coefficients of Ergodicity and Asymptotically Stable L 1-Contractions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We extend an inequality (which involves the Dobrushin coefficient of ergodicity; see Cohen et al.(4)) to any linear bounded operator with domain and codomain L 1-spaces. We use the extended Dobrushin coefficient of ergodicity, that appears in the inequality, in order to obtain sufficient conditions for the uniform asymptotic stability of a positive contraction of an L 1-space. We conclude the paper by studying a class of strongly asymptotically stable positive contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akcoglu, M., and Sucheston, L. (1972). On operator convergence in Hilbert space and in Lebesgue space. Period. Math. Hungar. 2, 235–244.

    Google Scholar 

  2. Aliprantis, C. D., and Burkinshaw, O. (1985). Positive Operators, Academic Press, New York/London.

    Google Scholar 

  3. Bartoszek, W. (1990). Asymptotic properties of the iterates of stochastic operators on (AL) Banach lattices. Annal. Polon. Math. 52, 165–173.

    Google Scholar 

  4. Cohen, J. E., Iwasa, Y., Rautu, G., Ruskai, M. B., Seneta, E., and Zbaganu, G. (1993). Relative entropy under mappings by stochastic matrices. Linear Algebra Appl. 179, 211–235.

    Google Scholar 

  5. Derriennic, Y. (1976). Lois “zéro ou deux” pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré, Probab. Statist. 12B, 111–129.

    Google Scholar 

  6. Dobrushin, R. L. (1956). Central limit theorem for nonstationary Markov chains. I and II. Th. Probab. Appl. 1, 65–80; 329–383.

    Google Scholar 

  7. Dunford, N. and Schwartz, J. T. (1958). Linear Operators, Part I: General Theory, Interscience, New York.

    Google Scholar 

  8. Halmos, P. R. (1974). Measure Theory, Springer, New York.

    Google Scholar 

  9. Komorowski, T., and Tyrcha, J. (1989). Asymptotic properties of some Markov operators. Bull. Polish Acad. Sci. Math. 37, 220–228.

    Google Scholar 

  10. Krengel, U. (1985). Ergodic Theorems, Walter de Gruyter, Berlin/New York.

    Google Scholar 

  11. Krengel, U., and Sucheston, L. (1969). On mixing in infinite measure spaces. Z. Wahrsch. verw. Geb. 13, 150–164.

    Google Scholar 

  12. Lin, M. (1971). Mixing for Markov operators. Z. Wahrsch. Verw. Geb. 19, 231–242.

    Google Scholar 

  13. Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, London, Amsterdam.

    Google Scholar 

  14. Ornstein, D., and Sucheston, L. (1970). An operator theorem on L 1 convergence to zero with applications to Markov kernels. Ann. Math. Statist. 41, 1631–1639.

    Google Scholar 

  15. Räbiger, F. (1993). Stability and ergodicity of dominated semigroups. I. The uniform case. Math. Z. 214, 43–54.

    Google Scholar 

  16. Revuz, D. (1975). Markov Chains, North-Holland, Amsterdam/Oxford.

    Google Scholar 

  17. Schaefer, H. H. (1974). Banach Lattices and Positive Operators, Springer, New York/Heidelberg/Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaharopol, R., Zbaganu, G. Dobrushin Coefficients of Ergodicity and Asymptotically Stable L 1-Contractions. Journal of Theoretical Probability 12, 885–902 (1999). https://doi.org/10.1023/A:1021684818286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021684818286

Navigation