Skip to main content
Log in

The Postcranial Morphology of Ptilocercus lowii (Scandentia, Tupaiidae): An Analysis of Primatomorphan and Volitantian Characters

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The eutherian orders Scandentia, Primates, Dermoptera, and Chiroptera have been grouped together by many morphologists, using various methods and data sets, into the cohort Archonta. Molecular evidence, however, has supported a clade (called Euarchonta) that includes Scandentia, Primates, and Dermoptera, but not Chiroptera. Within Archonta, some systematists have grouped Dermoptera and Chiroptera in Volitantia, while others have grouped Dermoptera and Primates in Primatomorpha. The order Scandentia includes the single family Tupaiidae, with two subfamilies, Ptilocercinae and Tupaiinae. Ptilocercinae is represented only by Ptilocercus lowii, which has been said to be the taxon most closely approximating the ancestral tupaiid. However, most researchers working on archontan phylogeny typically do not treat the order Scandentia as being polymorphic. They usually use Tupaia to represent Scandentia, despite the fact that Ptilocercus is quite distinct from Tupaia and has been argued to be the more plesiomorphic of the two taxa. In this study, a character analysis was performed on postcranial features that have been used to support the competing Primatomorpha and Volitantia hypotheses. In recognition of the polymorphic nature of Scandentia, taxonomic sampling within Scandentia was increased to include Ptilocercus. The postcranium of Ptilocercus was compared to that of tupaiines, euprimates, plesiadapiforms, dermopterans, and chiropterans. Several character states used to support either Primatomorpha or Volitantia, while not found in Tupaia, were found in Ptilocercus. While these features may have evolved independently in Ptilocercus, it is perhaps more likely that they represent features that first evolved in the ancestral archontan and were then lost in one of the extant orders. This character analysis greatly reduces the supportive evidence for the Primatomorpha hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  • Adkins, R. M., and Honeycutt, R. L. (1991). Molecular phylogeny of the superorder Archonta. Proc. Natl. Acad. Sci. USA 88: 10317–10321.

    PubMed  Google Scholar 

  • Adkins, R. M., and Honeycutt, R. L. (1993). A molecular examination of archontan and chiropteran monophyly. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 227–249, Plenum Press, New York.

    Google Scholar 

  • Allard, M. W., McNiff, B. E., and Miyamoto, M. M. (1996). Support for interordinal eutherian relationships with an emphasis on primates and their archontan relatives. Mol. Phylogenet. Evol. 5: 78–88.

    Article  PubMed  Google Scholar 

  • Bailey, W. J., Slightom, J. L., and Goodman, M. (1992). Rejection of the “flying primate” hypothesis by phylogenetic evidence from the E-globin gene. Science 256: 86–89.

    PubMed  Google Scholar 

  • Beard, K. C. (1989). Postcranial Anatomy, Locomotor Adaptations, and Paleoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). Ph.D. Dissertation, Johns Hopkins University.

  • Beard, K. C. (1990). Gliding behavior and paleoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature 345: 340–341.

    Article  Google Scholar 

  • Beard, K. C. (1991). Vertical postures and climbing in the morphotype of Primatomorpha: Implications for locomotor evolution in primate history. In: Origine(s) de la Bipédie chez les Hominidés, Y. Coppens and B. Senut, eds., pp. 79–87, CNRS, Paris.

    Google Scholar 

  • Beard, K. C. (1993a). Origin and evolution of gliding in Early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 63–90, Plenum Press, New York.

    Google Scholar 

  • Beard, K. C. (1993b). Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 129–150, Springer-Verlag, New York.

    Google Scholar 

  • Bloch, J. I., and Silcox, M. T. (2001). New basicrania of Paleocene-Eocene Ignacius: Re-evaluation of the plesiadapiform-dermopteran link. Amer. J. Phys. Anthropol. 116: 184–198.

    Article  Google Scholar 

  • Boyer, D. M., Bloch, J. I., and Gingerich, P. D. (2001). New skeletons of Paleocene paromomyids (Mammalia, ?Primates): Were they mitten gliders? J. Vert. Paleontol. 21 (Supp. to No. 3): 5A.

    Google Scholar 

  • Butler, P. M. (1972). The problem of insectivore classification. In: Studies in Vertebrate Evolution, K. A. Joysey and T. S. Kemp, eds., pp. 253–265, Oliver and Boyd, Edinburgh.

  • Butler, P. M. (1980). The tupaiid dentition. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 171–204, Plenum, New York.

    Google Scholar 

  • Campbell, C. B. G. (1966a). Taxonomic status of tree shrews. Science 153: 436.

    PubMed  Google Scholar 

  • Campbell, C. B. G. (1966b). The relationships of the tree shrews: The evidence of the nervous system. Evolution 20: 276–281.

    Google Scholar 

  • Campbell, C. B. G. (1974). On the phyletic relationships of the tree shrews. Mammal. Rev. 4: 125–143.

    Google Scholar 

  • Carleton, A. (1941). A comparative study of the inferior tibio-fibular joint. J. Anat. 76: 45–55.

    Google Scholar 

  • Carlsson, A. (1922). Über die Tupaiidae und ihre Beziehungen zu den Insectivora und den Prosimiae. Acta Zool. 3: 227–270.

    Google Scholar 

  • Cartmill, M., and MacPhee, R. D. E. (1980). Tupaiid affinities: The evidence of the carotid arteries and cranial skeleton. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 95–132, Plenum, New York.

    Google Scholar 

  • Chopra, S. R. K., and Vasishat, R. N. (1979). Sivalik fossil tree shrew from Haritalyangar, India. Nature 281: 214–215.

    Google Scholar 

  • Chopra, S. R. K., Kaul, S., and Vasishat, R. N. (1979). Miocene tree shrews from the Indian Sivaliks. Nature 281: 213–214.

    Google Scholar 

  • Cronin, J. E., and Sarich, V. M. (1980). Tupaiid and Archonta phylogeny: The macromolecular evidence. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 293–312, Plenum, New York.

    Google Scholar 

  • Dagosto, M. (1985). The distal tibia of primates with special reference to the Omomyidae. Int. J. Primatol. 6: 45–75.

    Google Scholar 

  • Dagosto, M. (1988). Implications of postcranial evidence for the origin of euprimates. J. Hum. Evol. 17: 35–56.

    Article  Google Scholar 

  • Dutta, A. K. (1975). Micromammals from Siwaliks. Indian Minerals 29: 76–77.

    Google Scholar 

  • Emmons, L. H. (2000). Tupai: A Field Study of Bornean Treeshrews, University of California Press, Berkeley.

    Google Scholar 

  • Goodman, M., Bailey, W. J., Hayasaka, K., Stanhope, M. J., Slightom, J., and Czelusniak, J. (1994). Molecular evidence on primate phylogeny from DNA sequences. Amer. J. Phys. Anthropol. 94: 3–24.

    Google Scholar 

  • Gould, E. (1978). The behavior of the moonrat, Echinosorex gymnurus (Erinaceidae) and the pentail tree shrew, Ptilocercus lowii (Tupaiidae) with comments on the behavior of other Insectivora. Z. Tierpsychol. 48: 1–27.

    Google Scholar 

  • Graur, D., Duret, L., and Gouy, M. (1996). Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379: 333–335.

    PubMed  Google Scholar 

  • Gregory, W. K. (1910). The orders of mammals. Bull. Amer. Mus. Nat. Hist. 27: 1–524.

    Google Scholar 

  • Haeckel, E. (1866). Generelle Morphologie Der Organismen, Georg Reimer, Berlin.

    Google Scholar 

  • Hamrick, M. W., Rosenman, B. A., and Brush, J. A. (1999). Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): The evidence for gliding behavior reconsidered. Amer. J. Phys. Anthropol. 109: 397–413.

    Google Scholar 

  • Honeycutt, R. L., and Adkins, R. M. (1993). Higher level systematics of eutherian mammals: An assessment of molecular characters and phylogenetic hypotheses. Ann. Rev. Ecol. Syst. 24: 279–305.

    Article  Google Scholar 

  • Jacobs, L. L. (1980). Siwalik fossil tree shrews. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 205–216, Plenum, New York.

    Google Scholar 

  • Jane, J. A., Campbell, C. B. G., and Yashon, D. (1965). Pyramidal tract: A comparison of two prosimian primates. Science 147: 153–155.

    PubMed  Google Scholar 

  • Johnson, J. I., and Kirsch, J. A. W. (1993). Phylogeny through brain traits: Interordinal relationships among mammals including Primates and Chiroptera. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 293–331, Plenum Press, New York.

    Google Scholar 

  • Kay, R. F., Thorington, R. W., and Houde, P. (1990). Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345: 342–344.

    Article  Google Scholar 

  • Kay, R. F., Thewissen, J. G. M., and Yoder, A. D. (1992). Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. Amer. J. Phys. Anthropol. 89: 477–498.

    Google Scholar 

  • Killian, J. K., Buckley, T. R., Stewart, N., Munday, B. L., and Jirtle, R. L. (2001). Marsupials and eutherians reunited: Genetic evidence for the Theria hypothesis of mammalian evolution. Mammal. Gen. 12: 513–517.

    Article  Google Scholar 

  • Krause, D. W. (1991). Were paromomyids gliders? Maybe, maybe not. J. Hum. Evol. 21: 177–188.

    Google Scholar 

  • Kriz, M., and Hamrick, M. W. (2001). The postcranial evidence for primate superordinal relationships. Amer. J. Phys. Anthropol. Supp. 32: 93.

    Google Scholar 

  • Le Gros Clark, W. E. (1924a). The myology of the tree shrew (Tupaia minor). Proc. Zool. Soc. Lond. 1924: 461–497.

    Google Scholar 

  • Le Gros Clark, W. E. (1924b). On the brain of the tree shrew (Tupaia minor). Proc. Zool. Soc. Lond. 1924: 1053–1074.

    Google Scholar 

  • Le Gros Clark, W. E. (1925). On the skull of Tupaia. Proc. Zool. Soc. Lond. 1925: 559–567.

    Google Scholar 

  • Le Gros Clark, W. E. (1926). On the anatomy of the pen-tailed tree shrew (Ptilocercus lowii). Proc. Zool. Soc. Lond. 1926: 1179–1309.

    Google Scholar 

  • Lemelin, P. (2000). Micro-anatomy of the volar skin and interordinal relationships of primates. J. Hum. Evol. 38: 257–267.

    Article  PubMed  Google Scholar 

  • Liu, F.-G. R., and Miyamoto, M. M. (1999). Phylogenetic assessment of molecular and morphological data for eutherian mammals. Syst. Biol. 48: 54–64.

    Article  PubMed  Google Scholar 

  • Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. (2001). Molecular and morphological supertrees for eutherian (placental) mammals. Science 291: 1786–1789.

    PubMed  Google Scholar 

  • Luckett, W. P. (ed.) (1980). Comparative Biology and Evolutionary Relationships of Tree Shrews, Plenum Press, New York.

    Google Scholar 

  • Luckett, W. P. (1993). Developmental evidence from the fetal membranes for assessing archontan relationships. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 149–186, Plenum Press, New York.

    Google Scholar 

  • MacPhee, R. D. E. (1981). Auditory Regions of Primates and Eutherian Insectivores: Morphology, Ontogeny, and Character Analysis. Contrib. Primatol. 18: 1–282.

    Google Scholar 

  • MacPhee, R. D. E. (ed.) (1993). Primates and Their Relatives in Phylogenetic Perspective, Plenum Press, New York.

    Google Scholar 

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R. M., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.

    PubMed  Google Scholar 

  • Martin, R. D. (1966). Tree shrews: Unique reproductive mechanism of systematic importance. Science 152: 1402–1404.

    PubMed  Google Scholar 

  • Martin, R. D. (1968a). Towards a new definition of primates. Man 3: 377–401.

    Google Scholar 

  • Martin, R. D. (1968b). Reproduction and ontogeny in tree shrews (Tupaia belangeri), with reference to their general behavior and taxonomic relationships. Z. Tierpsychol. 25: 409–532.

    PubMed  Google Scholar 

  • Martin, R. D. (1990). Primate Origins and Evolution, Princeton University Press, Princeton.

    Google Scholar 

  • McKenna, M. C. (1966). Paleontology and the origin of the primates. Folia Primatol. 4: 1–25.

    PubMed  Google Scholar 

  • McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates: A Multidisciplinary Approach, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Press, New York.

    Google Scholar 

  • McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Mein, P., and Ginsburg, L. (1997). Les mammiféres du gisement miocéne inférieur de Li Mae Long, Thailande: Systématique, biostratigraphie et paléoenvironnement. Geodiversitas 19: 783–844.

    Google Scholar 

  • Miyamoto, M. M. (1996). A congruence study of molecular and morphological data for eutherian mammals. Mol. Phylogenet. Evol. 6: 373–390.

    Article  PubMed  Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.

    PubMed  Google Scholar 

  • Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E. C., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.

    PubMed  Google Scholar 

  • Napier, J. R., and Napier, P. H. (1967). A Handbook of Living Primates, Academic, London.

    Google Scholar 

  • Novacek, M. J. (1980). Cranioskeletal features in tupaiids and selected Eutheria as phylogenetic evidence. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 35–93, Plenum, New York.

    Google Scholar 

  • Novacek, M. J. (1982). Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. In: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 3–41, Plenum Press, New York.

    Google Scholar 

  • Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Amer. Mus. Nat. Hist. 183: 1–112.

    Google Scholar 

  • Novacek, M. J. (1989). Higher mammal phylogeny: The morphological-molecular synthesis. In: The Hierarchy of Life, B. Fernholm, K. Bremer, and H. Jornvall, eds., pp. 421–435, Elsevier, Amsterdam.

    Google Scholar 

  • Novacek, M. J. (1990). Morphology, paleontology, and the higher clades of mammals. In: Current Mammalogy, H. H. Genoways, ed., pp. 507–543, Plenum Press, New York.

    Google Scholar 

  • Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.

    PubMed  Google Scholar 

  • Novacek, M. J. (1993). Reflections on higher mammalian phylogenetics. J. Mammal. Evol. 1: 3–30.

    Google Scholar 

  • Novacek, M. J. (1994). Morphological and molecular inroads to phylogeny. In: Interpreting the Hierarchy of Nature, L. Grande and O. Rieppel, eds., pp. 85–131, Academic Press, New York.

    Google Scholar 

  • Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the recent eutherian orders: Morphological evidence. Cladistics 2: 257–287.

    Google Scholar 

  • Novacek, M. J., Wyss, A. R., and McKenna, M. C. (1988). The major groups of eutherian mammals. In: The Phylogeny and Classification of the Tetrapods, Vol. 2: Mammals, M. J. Benton, ed., pp. 31–71, Clarendon Press, Oxford.

    Google Scholar 

  • Porter, C. A., Goodman, M., and Stanhope, M. J. (1996). Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol. Phylogenet. Evol. 5: 89–101.

    Article  PubMed  Google Scholar 

  • Qiu, Z. (1986). Fossil tupaiid from the hominoid locality of Lufeng, Yunnan. Vert. PalAsiatica 24: 308–319.

    Google Scholar 

  • Rose, K. D. (1999). Postcranial skeleton of Eocene Leptictidae (Mammalia), and its implications for behavior and relationships. J. Vert. Paleontol. 19: 355–372.

    Google Scholar 

  • Rose, K. D., and Lucas, S. G. (2000). An early Paleocene palaeanodont (Mammalia, ?Pholidota) from New Mexico, and the origin of Palaeanodonta. J. Vert. Paleontol. 20: 139–156.

    Google Scholar 

  • Runestad, J. A., and Ruff, C. B. (1995). Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. Amer. J. Phys. Anthropol. 98: 101–119.

    Google Scholar 

  • Sargis, E. J. (1999). Tree shrews. In: Encyclopedia of Paleontology, R. Singer, ed., pp. 1286–1287, Fitzroy Dearborn, Chicago.

    Google Scholar 

  • Sargis, E. J. (2000). The Functional Morphology of the Postcranium of Ptilocercus and Tupaiines (Scandentia, Tupaiidae): Implications for the Relationships of Primates and other Archontan Mammals. Ph.D. Dissertation, City University of New York.

  • Sargis, E. J. (2001a). A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): Functional morphology and phylogenetic implications. J. Zool. Lond. 253: 473–483.

    Google Scholar 

  • Sargis, E. J. (2001b). The phylogenetic relationships of archontan mammals: Postcranial evidence. J. Vert. Paleontol. 21 (Supp. to No. 3): 97A.

    Google Scholar 

  • Sargis, E. J. (2001c). The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). J. Zool. Lond. 253: 485–490.

    Google Scholar 

  • Sargis, E. J. (2002a). Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J. Morph. 253: 10–42.

    Article  PubMed  Google Scholar 

  • Sargis, E. J. (2002b). Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J. Morph. 254: 149–185.

    Article  PubMed  Google Scholar 

  • Sargis, E. J. (in press) A multivariate analysis of the postcranium of tree shrews (Scandentia, Tupaiidae) and its taxonomic implications. Mammalia.

  • Schlosser-Sturm, E., and Schliemann, H. (1995). Morphology and function of the shoulder joint of bats (Mammalia: Chiroptera). Z. zool. Syst. Evolut.-forsch. 33: 88–98.

    Google Scholar 

  • Schmitz, J., Ohme, M., and Zischler, H. (2000). The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of Scandentia to other eutherian orders. Mol. Biol. Evol. 17: 1334–1343.

    PubMed  Google Scholar 

  • Shoshani, J., Groves, C. P., Simons, E. L., and Gunnell, G. F. (1996). Primate phylogeny: Morphological vs molecular results. Mol. Phylogenet. Evol. 5: 102–154.

    Article  PubMed  Google Scholar 

  • Shoshani, J., and McKenna, M. C. (1998). Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenet. Evol. 9: 572–584.

    Article  PubMed  Google Scholar 

  • Silcox, M. T. (2001a). A phylogenetic analysis of Plesiadapiformes and their relationship to euprimates and other archontans. J. Vert. Paleontol. 21 (Supp. to No. 3): 101A.

    Google Scholar 

  • Silcox, M. T. (2001b). A Phylogenetic Analysis of Plesiadapiformes and Their Relationship to Euprimates and Other Archontans. Ph.D. Dissertation, Johns Hopkins University.

  • Silcox, M. T. (2002). The phylogeny and taxonomy of plesiadapiforms. Amer. J. Phys. Anthropol. Supp. 34: 141–142.

    Google Scholar 

  • Simmons, N. B. (1994). The case for chiropteran monophyly. Amer. Mus. Nov. 3103: 1–54.

    Google Scholar 

  • Simmons, N. B. (1995). Bat relationships and the origin of flight. Symp. Zool. Soc. Lond. 67: 27–43.

    Google Scholar 

  • Simmons, N. B., and Quinn, T. H. (1994). Evolution of the digital tendon locking mechanism in bats and dermopterans: A phylogenetic perspective. J. Mammal. Evol. 2: 231–254.

    Google Scholar 

  • Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85: 1–350.

    Google Scholar 

  • Smith, J. D., and Madkour, G. (1980). Penial morphology and the question of chiropteran phylogeny. In: Proceedings of the Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., pp. 347–365, Texas Tech Press, Lubbock, Texas.

    Google Scholar 

  • Stafford, B. J., and Thorington, R. W. (1998). Carpal development and morphology in archontan mammals. J. Morph. 235: 135–155.

    Article  PubMed  Google Scholar 

  • Stanhope, M. J., Bailey, W. J., Czelusniak, J., Goodman, M., Si, J.-S., Nickerson, J., Sgouros, J. G., Singer, G. A. M., and Kleinschmidt, T. K. (1993). A molecular view of primate supraordinal relationships from the analysis of both nucleotide and amino acid sequences. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 251–292, Plenum Press, New York.

    Google Scholar 

  • Stanhope, M. J., Smith, M. R., Waddell, V. G., Porter, C. A., Shivji, M. S., and Goodman, M. (1996). Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: Convincing evidence for several superordinal clades. J. Mol. Evol. 43: 83–92.

    PubMed  Google Scholar 

  • Steele, D. G. (1973). Dental variability in the tree shrews (Tupaiidae). In: Craniofacial Biology of Primates: Symposium of the IVth International Congress of Primatology, Vol. 3, M. R. Zingeser, ed., pp. 154–179, Karger, Basel.

    Google Scholar 

  • Szalay, F. S. (1968). The beginnings of primates. Evolution 22: 19–36.

    Google Scholar 

  • Szalay, F. S. (1969). Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull. Amer. Mus. Nat. Hist. 140: 193–330.

    Google Scholar 

  • Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 315–374, Plenum Press, New York.

    Google Scholar 

  • Szalay, F. S. (1999). Review of “Classification of Mammals above the Species Level” by M.C. McKenna and S.K. Bell. J. Vert. Paleontol. 19: 191–195.

    Google Scholar 

  • Szalay, F. S., and Dagosto, M. (1980). Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatol. 34: 1–45.

    PubMed  Google Scholar 

  • Szalay, F. S., and Dagosto, M. (1988). Evolution of hallucial grasping in the primates. J. Hum. Evol. 17: 1–33.

    Article  Google Scholar 

  • Szalay, F. S., and Drawhorn, G. (1980). Evolution and diversification of the Archonta in an arboreal milieu. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 133–169, Plenum, New York.

    Google Scholar 

  • Szalay, F. S., and Lucas, S. G. (1993). Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 187–226, Plenum Press, New York.

    Google Scholar 

  • Szalay, F. S., and Lucas, S. G. (1996). The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bull. New Mex. Mus. Nat. Hist. Sci. 7: 1–47.

    Google Scholar 

  • Szalay, F. S., Rosenberger, A. L., and Dagosto, M. (1987). Diagnosis and differentiation of the order Primates. Yrbk. Phys. Anthropol. 30: 75–105.

    Google Scholar 

  • Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188–192.

    Article  PubMed  Google Scholar 

  • Thewissen, J. G. M., and Babcock, S. K. (1991). Distinctive cranial and cervical innervation of wing muscles: New evidence for bat monophyly. Science 251: 934–936.

    PubMed  Google Scholar 

  • Thewissen, J. G. M., and Babcock, S. K. (1992). The origin of flight in bats. Bioscience 42: 340–345.

    Google Scholar 

  • Thewissen, J. G. M., and Babcock, S. K. (1993). The implications of the propatagial muscles of flying and gliding mammals for archontan systematics. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 91–109, Plenum Press, New York.

    Google Scholar 

  • Tong, Y. (1988). Fossil tree shrews from the Eocene Hetaoyuan Formation of Xichuan, Henan. Vert. PalAsiatica 26: 214–220.

    Google Scholar 

  • Van Valen, L. M. (1965). Tree shrews, primates, and fossils. Evolution 19: 137–151.

    Google Scholar 

  • Waddell, P. J., Okada, N., and Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48: 1–5.

    PubMed  Google Scholar 

  • Wagner, J. A. (1855). Die Säugethiere in Abbildungen Nach Der Natur, Weiger, Leipzig.

    Google Scholar 

  • Wible, J. R. (1993). Cranial circulation and relationships of the colugo Cynocephalus (Dermoptera, Mammalia). Amer. Mus. Nov. 3072: 1–27.

    Google Scholar 

  • Wible, J. R., and Covert, H. H. (1987). Primates: Cladistic diagnosis and relationships. J. Hum. Evol. 16: 1–22.

    Article  Google Scholar 

  • Wible, J. R., and Martin, J. R. (1993). Ontogeny of the tympanic floor and roof in archontans. In: Primates and their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 111–148, Plenum Press, New York.

    Google Scholar 

  • Wible, J. R., and Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats. Amer. Mus. Nov. 2911: 1–19.

    Google Scholar 

  • Wible, J. R., and Zeller, U. A. (1994). Cranial circulation of the pen-tailed tree shrew Ptilocercus lowii and relationships of Scandentia. J. Mammal. Evol. 2: 209–230.

    Google Scholar 

  • Wilson, D. E. (1993). Order Scandentia. In: Mammal Species of the World: A Taxonomic and Geographic Reference, D. E. Wilson and D. M. Reeder, eds., pp. 131–133, Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Wöhrmann-Repenning, A. (1979). Primate characters in the skull of Tupaia glis and Urogale everetti (Mammalia, Tupaiiformes). Senckenberg. Biol. 60: 1–6.

    Google Scholar 

  • Zeller, U. A. (1986a). Ontogeny and cranial morphology of the tympanic region of the Tupaiidae, with special reference to Ptilocercus. Folia Primatol. 47: 61–80.

    PubMed  Google Scholar 

  • Zeller, U. A. (1986b). The systematic relations of tree shrews: Evidence from skull morphogenesis. In: Primate Evolution, J. G. Else and P. C. Lee, eds., pp. 273–280, Cambridge University Press, Cambridge.

    Google Scholar 

  • Zeller, U. A. (1987). Morphogenesis of the mammalian skull with special reference to Tupaia. In: Morphogenesis of the Mammalian Skull, H. J. Kuhn and U. A. Zeller, eds., pp. 17–50, Verlag Paul Parey, Hamburg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargis, E.J. The Postcranial Morphology of Ptilocercus lowii (Scandentia, Tupaiidae): An Analysis of Primatomorphan and Volitantian Characters. Journal of Mammalian Evolution 9, 137–160 (2002). https://doi.org/10.1023/A:1021387928854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021387928854

Navigation