Skip to main content
Log in

The Normal Human Menstrual Cycle

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ferenczy A, Bergeron C. Histology of the human endometrium: from birth to senescence. Ann NY Acad Sci 1991;622:6-27.

    Google Scholar 

  2. Tsafriri A, Chun SY, Reich R. Follicular rupture and ovulation. In: Adashi EY, Leung PCK, eds. The ovary, New York: Raven Press, 1993;227-244.

    Google Scholar 

  3. Knobli E, Hotchkis J. The menstrual cycle and its neuroendocrine control. In: Knobil E, Neill JD, eds. The Physiology of Reproduction, Vol. 2. New York: Raven Press, 1988:1971-1994.

    Google Scholar 

  4. de Ziegler D, Bergeron C, Cornel C, Nedalie DA, Massai MR, Nicgrom E, Frydman R, Bouchard P. Effects of luteal estradiol on the secretory transformation of human endometrium and plasma gonadotropins. J Clin Endocrinol Metab 1992;74:322-331.

    Google Scholar 

  5. le Nestour E, Marraoui J, Lahlou N, Roger M, de Ziegler D, Bouchard P. Role of estradiol in the rise in follicle-stimulating hormone levels during the luteal-follicular transition. J Clin Endocrinol Metab 1993;77:439-442.

    Google Scholar 

  6. Hsueh AJ, Eisenhauer K, Chun SY, Hsu SY, Billig H. Gonadal cell apoptosis. Recent Prog Horm Res 1996;51:433-455.

    Google Scholar 

  7. Pru JK, Tilly JL. Programmed cell death in the ovary: insights and future prospects using genetic technologies. Mol Endocrinol 2001;15:845-853.

    Google Scholar 

  8. Hsu SY, Kaipia A, McGee E, Lomeli M, Hsueh AJ. Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci USA 1997;94:12401-12406.

    Google Scholar 

  9. Erickson GF. Defining apoptosis: players and systems. J Soc Gynecol Investig 1997;4:219-228.

    Google Scholar 

  10. Shun S, Billig H, Tilly J. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor-I. Endocrinology 1994;135:1845-1853.

    Google Scholar 

  11. Yuan W, Giudice LC. Programmed cell death in human ovary is a function of follicle and corpus luteum status. J Clin Endocrinol Metab 1997;82:3148-3155.

    Google Scholar 

  12. Gougeon A. Ovarian follicular growth in humans: ovarian ageing and population of growing follicles. Maturitas 1998;30:137-142.

    Google Scholar 

  13. Gougeon A, Busso D. Morphologic and functional determinants of primordial and primary follicles in the monkey ovary. Mol Cell Endocrinol 2000;163:33-42.

    Google Scholar 

  14. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000;21:200-214.

    Google Scholar 

  15. Chun SY, Billig H, Tilly JL, Furuta I, Tsafriri A, Hsueh AJ. Gonadotropin suppression of endogenous insulin-like growth factor I. Endocrinology 1994;135:1845-1853.

    Google Scholar 

  16. McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 1995;9:131-136.

    Google Scholar 

  17. Vitt UA, Hsueh AJ. Stage-dependent role of growth differentiation factor-9 in ovarian follicle development. Moll Cell Endocrinol 2001;183:171-177.

    Google Scholar 

  18. Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JI, Jokiranta TS, Dodds KG, Montgomery GW, Beattie AE, Davis GH, Rivos O. Mutations in an oocyte-derived growth factor gene (BMO15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 2000;25:279-283.

    Google Scholar 

  19. Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM. The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci USA 2001;98:7994-7999.

    Google Scholar 

  20. Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lannelue I, Pisselet C, Riquet J, Monniaux D, Lallebaut I, Cribiu E, Thimonier J, Teyssler J, Bodin L, Cognie Y, Chitour N, Elsen JM. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proc Natl Acad Sci USA 2001;98:5104-5109.

    Google Scholar 

  21. Matthews CH, Borgato S, Beck-Peccoz P, Adams M, Tone Y, Gambino G, Casagrande S, Tedeschini G, Bennedetti A, Chatterjee VK. Primary amenorrhoea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. Nat Genet 1993;5:83-86.

    Google Scholar 

  22. Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab 1997;82:3748-3751.

    Google Scholar 

  23. Aittomaki K, Lucena JL, Pakarinen P, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 1995;82:959-968.

    Google Scholar 

  24. Galway AB, Lapolt PS, Tsafriri A, Dargan CM, Boime I, Hsueh AJ. Recombinant follicle-stimulating hormone induces ovulation and tissue plasminogen activator expression in hypophysectomized rats. Endocrinology 1990;127:3023-3028.

    Google Scholar 

  25. Layman LC, Shelley ME, Huey LO, Wall SW, Tho SP, McDonough PG. Follicle-stimulating hormone beta gene structure in premature ovarian failure. Fertil Steril 1993;60:852-857.

    Google Scholar 

  26. Udoff L, Adashi E. Intraovarian growth factors and follicular development. Curr Opin Endocrinol Diabetes 1996;3:478-482.

    Google Scholar 

  27. Dor J, Ben-Shlomo I, Lunenfeld B, Pariente C, Levran D, Karasik A, Seppala M, Mashiach S. Insulin-like growth factor-I (IGF-I) may not be essential for ovarian follicular development: evidence from IGF-I deficiency. J Clin Endocrinol Metab 1992;74:539-542.

    Google Scholar 

  28. Monget P, Bondy C. Importance of the IGF system in early folliculogenesis. Mol Cell Endocrinol 2000;163:89-93.

    Google Scholar 

  29. Filicori M, Cognigni GE. Clinical review 126: Roles and novel regimens of luteinizing hormone and follicle-stimulating hormone in ovulation induction. J Clin Endocrinol Metab 2001;86:1437-1441.

    Google Scholar 

  30. Filicori M. The role of luteinizing hormone in folliculogenesis and ovulation induction. Fertil Steril 1999;71:405-414.

    Google Scholar 

  31. Sullivan MW, Stewart-Akers A, Krasnow JS, Berga SL, Zeleznik AJ. Ovarian responses in women to recombinant follicle-stimulating hormone and luteinizing hormone (LH): a role for LH in the final stages of follicular maturation. J Clin Endocrinol Metab 1999;84:228-232.

    Google Scholar 

  32. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 1996;17:121-155.

    Google Scholar 

  33. Lahlou N, Chabbert-Buffet N, Christin-Maitre S, Le Nestour F, Roger M, Bouchard P. Main inhibitor of follicle stimulating hormone in the luteal-follicular transition: inhibin A, oestradiol, or inhibin B? Hum Reprod 1999;14:1190-1193.

    Google Scholar 

  34. Weston AM, Zelinski-Wooten MB, Hutchison JS, Stouffer RL, Wolf DP. Developmental potential of embryos produced by in vitro fertilization from gonadotrophin-releasing hormone antagonist-treated macaques stimulated with recombinant human follicle stimulating hormone alone or in combination with luteinizing hormone. Hum Reprod 1996;11:608-613.

    Google Scholar 

  35. Schoot DC, Harlin J, Shoham Z, Mannaerts BM, Lahlou N, Bouchard P, Bennink HJ, Fausen BC. Recombinant human follicle-stimulating hormone and ovarian response in gonadotrophin-deficient women. Hum Reprod 1994;9:1237-1242.

    Google Scholar 

  36. Shoham Z, Balen A, Patel A, Jacobs HS. Results of ovulation induction using human menopausal gonadotropin or purified follicle-stimulating hormone in hypogonadotropic hypogonadism patients. Fertil Steril 1991;56:1048-1053.

    Google Scholar 

  37. The European Recombinant Human LH Study Group. Recombinant human luteiniizing hormone (LH) to support recombinant human follicle-stimulating hormone (FSH)-induced follicular development in LH-and FSH-deficient anovulatory women: a dose-finding study. J Clin Endocrinol Metab 1998;83:1507-1514.

    Google Scholar 

  38. Latronico AC, Anasti J, Arnhold IJ, Rapaport R, Mendonca BR, Bloise W, Castro M, Tsigo. Brief report: testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N Engl I Med 1996;334:507-512.

    Google Scholar 

  39. Xia L, Van Vogt D, Alston FJ, Luckhaus J, Ferin M. A surge of gonadotropin-releasing hormone accompanies the estradiolinduced gonadotropin surge in the rhesus monkey. Endocrinology 1992;131:2812-2820.

    Google Scholar 

  40. Clarke IJ. Evidence that the switch from negative to positive feedback of the level of the pituitary gland is an important timing event for the onset of the preovulatory surge in LH in the ewe. J Endocrinol 1995;145:271-282.

    Google Scholar 

  41. Naftolin F, Horvath TL, Jakab RL, Leranth C, Harada N, Balthazart J. Aromatase immunoreactivity in axon terminals of the vertebrate brain. An immunocytochemical study on quail, rat, monkey and human tissues. Neuroendocrinology 1996;63:149-155.

    Google Scholar 

  42. Knauf C, Prevot V, Stefano GB, Mortreux G, Beauvillain IC, Croix D. Evidence for a spontaneous nitric oxide release from the rat median eminence: influence on gonadotropin-releasing hormone release. Endocrinology 2001;142:2343-2350.

    Google Scholar 

  43. Trevor V, Bouret S, Stefano GB, Beauvillain J. Median eminence nitric oxide signaling. Brain Res Brain Res Rev 2000;34:27-41.

    Google Scholar 

  44. Adams JM, Taylor AE, Schoenfeld DA, Crowley WF, Jr., Hall JE. The midcycle gonadotropin surge in normal women occurs in the face of an unchanging gonadotropin-releasing hormone pulse frequency. J Clin Endocrinol Metab 1994;79:858-864.

    Google Scholar 

  45. Leyendecker G, Wildt L, Hansmann M. Pregnancies following chronic intermittent (pulsatile) administration of Gn-RH by means of a portable pump ("Zyklomat")?a new approach to the treatment of infertility in hypothalamic amenorrhea. J Clin Endocrinol Metab 1980;51:1214-1216.

    Google Scholar 

  46. Chandrasekher YA, Hutchison JS, Zelinski-Wooten MB, Hess DL, Wolf DP, Stouffer RL. Initiation of periovulatory events in primate follicles using recombinant and native human luteinizing hormone to mimic the midcycle gonadotropin surge. J Clin Endocrinol Metab 1994;79:298-306.

    Google Scholar 

  47. Richards JS. Perspective: the ovarian follicle?a perspective in 2001. Endocrinology 2001;142:2184-2193.

    Google Scholar 

  48. Sirois J, Richards JS. Transcriptional regulation of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. Evidence for the role of a cis-acting C/EBP beta promoter element. J Biol Chem 1993;268:21931-21938.

    Google Scholar 

  49. Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos JM, Dey SK. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 1997;91:197-208.

    Google Scholar 

  50. Davis B, Lennard D, Lee C. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin F2 and initerleukin-1 beta. Endocrinology 1999;140:2685-2695.

    Google Scholar 

  51. Horwitz A, Loukides J, Ricciarelli F, Botero L, Katz E, McAllister JM, Garcia JE, Rohan R, Hernandez ER. Human intraovarian interleukin-1 (IL-1) system: highly compartmentalized and hormonally dependent regulation of the genes encoding IL-1, its receptor, and its receptor antagonist. J Clin Invest 1992;89:1746-1754.

    Google Scholar 

  52. Vazquez F, Hastings G, Ortega MA, Lane TF, Oikemus S, Lombardo M, Irdela-Arispe ML. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 1999;274:23349-23357.

    Google Scholar 

  53. Geva F, Jaffe RB. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil Steril 2000;74:429-438.

    Google Scholar 

  54. Gordon JD, Mesiano S, Zaloudek CJ, Jaffe RB. Vascular endothelial growth factor localization in human ovary and fallopian tubes: possible role in reproductive function and ovarian cyst formation. J Clin Endocrinol Metab 1996;81:353-359.

    Google Scholar 

  55. Vinson GP, Saridogan E, Puddefoot JR, Djahanbakheh O. Tissue renin-angiotensin systems and reproduction. Hum Reprod 1997;12:651-662.

    Google Scholar 

  56. Koos R. Potential relevance of angiogenic factors to ovarian physiology. Semin Reprod Endocrinol 1989;7:29-40.

    Google Scholar 

  57. Klauber N, Rohan RM, Flynn F, D'Amato RJ. Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat Med 1997;3:443-446.

    Google Scholar 

  58. Duffy D, Hutchison J, Stewart D. Stimulation of primate luteal function by recombinant human chorionic gonadotropin and modulation of steroid, but not relaxin, production by an inhibitor of 3 beta-hydroxysteroid dehydrogenase during stimulated early pregnancy. J Clin Endocrinol Metab 1996;81:2307-2313.

    Google Scholar 

  59. Zeleznik AJ, Somers JP. Regulation of the primate corpus luteum: cellular and molecular perspectives. Trends Endocrinol Metab 1999;10:189-193.

    Google Scholar 

  60. Dubourdieu S, Charbonnel B, Massai MR, Marraoui J, Spitz J, Bouchard P. Suppression of corpus luteum function by the gonadotropin-releasing hormone antagonist Nal-Glu: effect of the dose and timing of human chorionic gonadotropin administration. Fertil Steril 1991;56:440-445.

    Google Scholar 

  61. Stanton PG, Burgon PG, Henn MT, Robertson DM. Structural and functional characterisation of hFSH and hLH isoforms. Mol Cell Endocrinol 1996;125:133-141.

    Google Scholar 

  62. Ulloa-Aguirre A, Midgley AR, Jr., Beitins IZ, Padmanabhan V. Follicle-stimulating isohormones: characterization and physiological relevance. Endocr Rev 1995;16:765-787.

    Google Scholar 

  63. Dofau ML. The luteinizing hormone receptor. Annu Rev Physiol 1998;60:461-496.

    Google Scholar 

  64. Segaloff DL, Ascoli M. The lutropin/choriogonadotropin receptor?4 years later. Endocr Rev 1993;14:324-347.

    Google Scholar 

  65. Simoni M, Gromoll J, Nieschlag F. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 1997;18:739-773.

    Google Scholar 

  66. Gudermann T, Birnbaumer M, Bimbaumer L. Evidence for dual coupling of the marine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2 + mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells. J Biol Chem 1992;267:4479-4488.

    Google Scholar 

  67. Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocordcoid-induced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000;14:1283-1300.

    Google Scholar 

  68. Babu PS, Danilovich N, Sairam MR. Hormone-induced receptor gene splicing: enhanced expression of the growth factor type I follicle-stimulating hormone receptor motif in the developing mouse ovary as a new paradigm in growth regulation. Endocrinology 2001;142:381-389.

    Google Scholar 

  69. Babu PS, Krishnamurthy H, Chedrese PJ, Sairam MR. Activation of extracellular-regulated kinase pathways in ovarian granulosa cells by the novel growth factor type 1 follicle-stimulating hormone receptor. Role in hormone signaling and cell proliferation. J Biol Chem 2000;275:27615-27626.

    Google Scholar 

  70. Rabinovici J, Blankstein J, Goldman B, Rudak E, Dor Y, Pariente C, Geler A, Lunenfield B, Maschiach S. In vitro fertilization and primary embryonic cleavage are possible in 17 alpha-hydroxylase deficiency despite extremely low intrafollicular 17 beta-estradiol. J Clin Endocrinol Metal 1989;68:693-697.

    Google Scholar 

  71. Kuiper GG, Enmark F, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Nail Arad Sci USA 1996;93:5925-5930.

    Google Scholar 

  72. Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson JA. The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol 1998;19:253-286.

    Google Scholar 

  73. Cause JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ, Kovach KS Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 1999;286:2328-2331.

    Google Scholar 

  74. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metal 1995;80:3689-3698.

    Google Scholar 

  75. Matikainen T, Ding YQ, Vergara M, Huhtaniemi J, Couzinet B, Schaison G. Differing responses of plasma bioactive and immunoreactive follicle-stimulating hormone and luteinizing hormone to gonadouopin-releasing hormone antagonist and agonist treatments in postmenopausal women. J Clin Endocrinol Metab 1992;75:820-825.

    Google Scholar 

  76. Fraser HM, Lunn SF. Does inhibin have an endocrine function during the menstrual cycle. Trends Endocrinol Metab 1993;4:187-194.

    Google Scholar 

  77. Christin-Maitre S, Olivennes F, Dubourdieu S, Chabbert-Buffet N, Charbonnel B, Frydman R, Bouchard P. Effect of gonadotrophin-releasing hormone (GnRH) antagonist during the LH surge in normal women and during controlled ovarian hyperstimulation. Clin Endocrinol (Oxf) 2000;52:721-726.

    Google Scholar 

  78. Dubourdieu S, Charbonnel B, D'Acremont MF, Carreau S, Spitz IM, Bouchard P. Effect of administration of a gonadotropinreleasing hormone (GnRH) antagonist (Nal-Glu) during the periovulatory period: the luteinizing hormone surge requires secretion of GnRH. J Clin Endocrinol Metab 1994;78:343-347.

    Google Scholar 

  79. Hall JF, Taylor AF, Martin KA, Rivier J, Schoenfeld DA, Crowley WF, Jr. Decreased release of gonadouopin-releasing hormone during the preovulatory midcycle luteinizing hormone surge in normal women. Proc Nail Arad Sci USA 1994;91:6894-6898.

    Google Scholar 

  80. Liaw JJ, He JR, Barraclough CA. Temporal changes in tyrosine hydroxylase mRNA levels in Al, A2 and locus ceruleus neurons following electrical stimulation of Al noradrenergic neurons. Brain Res Mol Brain Res 1992;13:171-174.

    Google Scholar 

  81. Mohankumar PS, Thyagarajan S, Quadri SK. Correlations of catecholamine release in the medial preoptic area with proestrous surges of luteinizing hormone and prolactin: effects of aging. Endocrinology 1994;135:119-126.

    Google Scholar 

  82. Kalra SP. Mandatory neuropeptide-steroid signaling for the preovulatory luteinizing hormone-releasing hormone discharge. Endocr Rev 1993;14:507-538.

    Google Scholar 

  83. Prevot V, Croix D, Bouret S, Dutch S, Transit G, Stefano GB, Beauvillain IC. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glioendothelial interactions in gonadouopin-releasing hormone release. Neuroscience 1999;94:809-819.

    Google Scholar 

  84. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, O'Malley BW. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995;9:2266-2278.

    Google Scholar 

  85. Skinner DC, Bouchard P, Caraty A. The progesterone blockade of the luteinizing hormone surge is overcome by RU486. J Neuroendocrinol 1999;11:637-641.

    Google Scholar 

  86. Skinner DC, Caraty A, Allingham R. Unmasking the progesterone receptor in the preoptic area and hypothalamus of the ewe: no colocalization with gonadotropin-releasing neurons. Endocrinology 2001;142:573-579.

    Google Scholar 

  87. Skinner DC, Evans NP, Delaleu B, Goodman RL, Bouchard P, Caraty A. The negative feedback actions of progesterone on gonadotropin-releasing hormone secretion are transduced by the classical progesterone receptor. Proc Natl Acad Sci USA 1998;95:10978-10983.

    Google Scholar 

  88. Bayliss DA, Millhorn DE. Chronic estrogen exposure maintains elevated levels of progesterone receptor mRNA in guinea pig hypothalamus. Brain Res Mol Res 1991;10:167-172.

    Google Scholar 

  89. Bayliss DA, Seroogy KB, Millhorn DE. Distribution and regulation by estrogen of progesterone receptor in the hypothalamus of the cat.

  90. Kraus WL, Montano MM, Katzenellenbogen BS. Cloning of the rat progesterone receptor gene 5'-region and identification of two funcdonally distinct promoters. Mol Endocrinol 1993;7:1603-1616.

    Google Scholar 

  91. Shughrue PJ, Lane MV, Merchenthaler I. Regulation of progesterone receptor messenger ribonucleic acid in the rat medial preoptic nucleus by estrogenic and antiestrogenic compounds: an in situ hybridization study.

  92. Findlay JK, Drummond AF, Britt KL, Dyson M, Wreford NG, Robertson DM, Groome NP, Dongs M, Simpson ER. The roles of activins, inhibins and estrogen in early committed follicles. Mol Cell Endocrinol 2000;163:81-87.

    Google Scholar 

  93. Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 2001;121:503-512.

    Google Scholar 

  94. Groome NP, Tsigou A, Cranfield M, Knight PG, Robertson DM. Enzyme immunoassays for inhibins, activins and follistatins. Mol Cell Endocrinol 2001;180:73-77.

    Google Scholar 

  95. Groome NP, Illingworth PI, O'Brien M, Pai R, Rodger FE, Mather JP, McNeilly AS. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab 1996;81:1401-1405.

    Google Scholar 

  96. Groome N, O'Brien M. Immunoassays for inhibin and its subunits. Further applications of the synthetic peptide approach. J Immunol Methods 1993;165:167-176.

    Google Scholar 

  97. Molskness TA, Woodruff TK, Hess DL, Dahl KD, Stouffer RL. Recombinant human inhibin-A administered early in the menstrual cycle alters concurrent pituitary and follicular, plus subsequent luteal, function in rhesus monkeys. J Clin Endocrinol Metab 1996;81:4002-4006.

    Google Scholar 

  98. Garcia F, Bouchard P, De Brux J, Berdah J, Frydman R, Schaison G, Milgron F, Perrot-Applanat M. Use of immunocytochemistry of progesterone and estrogen receptors for endometrial dating. J Clin Endocrinol Metab 1988;67:80-87.

    Google Scholar 

  99. Giudice LC. Growth factors and growth modulators in human uterine endometrium: their potential relevance to reproductive medicine. Fertil Steril 1994;61:1-17.

    Google Scholar 

  100. Giudice LC. Genes associated with embryonic attachment and implantation and the role of progesterone. J Reprod Med 1999;44:165-171.

    Google Scholar 

  101. Lessey BA. The role of the endometrium during embryo implantation. Hum Reprod 2000;15(Supp1. 6):39-50.

    Google Scholar 

  102. Nikas G. Endometrial receptivity: changes in cell-surface morphology. Semin Reprod Med 2000;18:229-235.

    Google Scholar 

  103. Nikas G, Develioglu OH, Toner JP, Jones HW, Jr. Endometrial pinopodes indicate a shift in the window of receptivity in IVF cycles. Hum Reprod 1999;14:787-792.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bouchard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabbert-Buffet, N., Bouchard, P. The Normal Human Menstrual Cycle. Rev Endocr Metab Disord 3, 173–183 (2002). https://doi.org/10.1023/A:1020027124001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020027124001

Navigation