Skip to main content
Log in

On Multifractality and Fractional Derivatives

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is shown phenomenologically that the fractional derivative ξ = D α u of order α of a multifractal function has a power-law tail ∝\(\left| \xi \right|^{ - p_ \star}\) in its cumulative probability, for a suitable range of α's. The exponent is determined by the condition \(\zeta _{p_ \star } = {\alpha }p_ \star\), where ζ p is the exponent of the structure function of order p. A detailed study is made for the case of random multiplicative processes (Benzi et al., Physica D 65:352 (1993)) which are amenable to both theory and numerical simulations. Large deviations theory provides a concrete criterion, which involves the departure from straightness of the ζ p graph, for the presence of power-law tails when there is only a limited range over which the data possess scaling properties (e.g., because of the presence of a viscous cutoff). The method is also applied to wind tunnel data and financial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Parisi and U. Frisch, On the singularity structure of fully developed turbulence, in Turbulence and Predictability in Geophysical Fluid Dynamics, Proceed. Intern. School of Physics 'E. Fermi' 1983 Varenna, Italy, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, 1985), pp. 84-87.

  2. F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, High-order velocity structure functions in turbulent shear flow, J. Fluid. Mech. 140:63-89 (1984).

    Google Scholar 

  3. R. Benzi, L. Biferale, A. Crisanti, G. Paladin, M. Vergassola, and A. Vulpiani, A random process for the construction of multiaffine fields, Physica D 65:163-171 (1993).

    Google Scholar 

  4. H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta. Math. 131:207-248 (1973).

    Google Scholar 

  5. B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid. Mech. 62:331-358 (1974).

    Google Scholar 

  6. U. Frisch, Turbulence, the Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  7. See http://www.hypercomplex.com/history/fcalc.html for a history of the concept of fractional derivative, various definitions and references.

  8. M. Stiassnie, A look at fractal functions through their fractional derivatives, Fractals 5:561-563 (1997).

    Google Scholar 

  9. U. Frisch and Z. S. She, On the probability density function of velocity gradients in fully developed turbulence, Fluid Dynam. Res. 8:139-142 (1991).

    Google Scholar 

  10. R. Benzi, L. Biferale, G. Paladin, A. Vulpiani, and M. Vergassola, Multifractality in the statistics of velocity gradients, Phys. Rev. Lett. 67:2299-2302 (1991).

    Google Scholar 

  11. U. Frisch and J. Bec, ''Burgulence,'' in Les Houches 2000: New Trends in Turbulence, M. Lesieur, ed. (Springer EDP-Sciences, 2001), to appear (nlin.CD/0012033).

  12. B. Derrida and H. J. Hillhorst, Singular behaviour of certain infinite products of random 2×2 matrices, J. Phys. A 16:2641-2654 (1983).

    Google Scholar 

  13. C. de Calan, J. M. Luck, Th. M. Nieuwenhuizen, and D. Petritis, On the distribution of a random variable occurring in 1D disordered systems, J. Phys. A 18:501-523 (1985).

    Google Scholar 

  14. D. Sornette, Linear stochastic dynamics with nonlinear fractal properties, Physica A 250:295-314 (1998).

    Google Scholar 

  15. P. Jögi, D. Sornette, and M. Blank, Fine structure and complex exponents in power law distributions from random maps, Phys. Rev. E 57:120-134 (1998).

    Google Scholar 

  16. P. Diaconis and D. Freedman, Iterated Random Functions, SIAM Rev. 41:45-76 (1999).

    Google Scholar 

  17. M. Blank, Perron-Frobenius spectrum for random maps and its approximation, Moscow Math. J. 1:315-344 (2001).

    Google Scholar 

  18. S. R. S. Varadhan, Large Deviations and Applications (SIAM, Philadelphia, 1984).

    Google Scholar 

  19. R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, Berlin, 1985).

    Google Scholar 

  20. H. Takayasu, H. Sato, and M. Takayasu, Stable infinite variance fluctuations in randomly amplified Langevin systems, Phys. Rev. Lett. 79:966-969 (1997).

    Google Scholar 

  21. G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Reading, 1949).

    Google Scholar 

  22. D. Sornette, L. Knopoff, Y. Y. Kagan, and C. Vanneste, Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes, J. Geophys. Res. 101:13883-13893 (1996).

    Google Scholar 

  23. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  24. Y. Gagne, private communication (2001).

  25. E. Aurell, U. Frisch, J. Lutsko, and M. Vergassola, On the multifractal properties of the energy dissipation derived from turbulence data, J. Fluid Mech. 238:467-486 (1992).

    Google Scholar 

  26. L. Biferale, M. Blank, and U. Frisch, Chaotic cascades with Kolmogorov 1941 scaling, J. Stat. Phys. 75:781-795 (1994).

    Google Scholar 

  27. L. Biferale, M. Cencini, D. Pierotti, and A. Vulpiani, Intermittency in stochastically perturbed turbulent models, J. Stat. Phys. 88:1117-1138 (1997).

    Google Scholar 

  28. D. Schertzer and S. Lovejoy, On the dimension of atmospheric motion, in Turbulence and Chaotic Phenomena in Fluids, T. Tatsumi, ed. (North-Holland, 1984), pp. 505-512.

  29. Y. Meyer, Wavelets: Algorithms and Applications (SIAM, Philadelphia, 1993).

    Google Scholar 

  30. S. Jaffard, On the Frisch-Parisi conjecture, J. Math. Pures Appl. 79:525-552 (2000).

    Google Scholar 

  31. C. Brun and A. Pumir, Statistics of Fourier modes in a turbulent flow, Phys. Rev. E 63:56313-1-13 (2001).

    Google Scholar 

  32. H. Giorgi and S. L. Glashow, Unity of all elementary-particle forces, Phys. Rev. Lett. 32:438-441 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisch, U., Matsumoto, T. On Multifractality and Fractional Derivatives. Journal of Statistical Physics 108, 1181–1202 (2002). https://doi.org/10.1023/A:1019843616965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019843616965

Navigation