Skip to main content
Log in

Computer simulation of sliding hydroxylated alumina surfaces

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A molecular dynamics simulation is performed to investigate the frictional force and energy transfer dynamics associated with sliding hydroxylated alumina surfaces. The calculated coefficient of friction is in good agreement with a recent experimental study. The dynamics of energy transfer from the interface of the sliding surface is investigated by calculating the surface–surface intermolecular potential and the energy in surface hydroxyl groups. The simulations indicate the experimental friction force arises from energy relaxation. A transition from stick–slip to smooth sliding is observed as the sliding velocity is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bhushan and V.N. Koinkar, J. Appl. Phys. 75 (1994) 5741.

    Article  CAS  Google Scholar 

  2. N.V. Gitis, L. Volpe and R. Sonnenfeld, in: Long-Term Stiction at the Magnetic Thin Film Disk-Slider Interface, Advances in Information Storage Systems, Vol. 3, ed. B. Bhushan (ASME, New York, 1991).

    Google Scholar 

  3. J. Krim, Sci. Am. October (1996) 74.

    Article  Google Scholar 

  4. G.A. Tomlinson, Philos. Mag. 7 (1929) 905.

    CAS  Google Scholar 

  5. F.C. Frenkel and T. Kontorova,Zh. Eksp. Teor. Fiz. 8 (1938) 1340.

    Google Scholar 

  6. J.B. Sokoloff, Phys. Rev. B 42 (1990) 760.

    Article  Google Scholar 

  7. G.M. McClelland, in: Adhesion and Friction, Springer Series of Surface Sciences, Vol. 17, eds. M. Grunze and H.J. Kreuzer (Springer, Berlin, 1989) p. 1.

    Google Scholar 

  8. G.M. McClelland and J.N. Glosli, in: NATO ASI Proceedings on Fundamentals of Friction: Macroscopic and Microscopic Processes, eds. I.L. Singer and H.M. Pollock (Kluwer Academic Publishers, Dordrect, 1992) p. 405.

    Google Scholar 

  9. C.M. Mate, G.M. McClelland, R. Erlandsson and S. Chiang, Phys. Rev. Lett. 59 (1987) 1942.

    Article  CAS  Google Scholar 

  10. G.J. Germann, S.R. Cohen, G. Neubauer, G.M. McClelland, H. Seki and D. Coulman, J. Appl. Phys. 73 (1993) 163.

    Article  CAS  Google Scholar 

  11. P.M. McGuiggan, J.N. Israelachvili, M.L. Gee and A.M. Homola, Mater. Res. Soc. Symp. Proc. 140 (1989) 79.

    Google Scholar 

  12. H. Yoshizawa, Y.-L. Chen and J.N. Israelachvili, Wear 168 (1993) 161.

    Article  CAS  Google Scholar 

  13. S. Yamada and J. Israelachvili, J. Phys. Chem. B 102 (1998) 234.

    Article  CAS  Google Scholar 

  14. A. Lio, D.H. Charych and M. Salmeron, J. Phys. Chem. B 101 (1997) 3800.

    Article  CAS  Google Scholar 

  15. J. Krim, D.H. Solina and R. Chiarello, Phys. Rev. Lett. 66 (1991) 181.

    Article  CAS  Google Scholar 

  16. S. Granick, Science 253 (1991) 1374.

    CAS  Google Scholar 

  17. A.L. Demirel and S. Granick, J. Chem. Phys. 109 (1998) 6889.

    Article  CAS  Google Scholar 

  18. E. Kumacheva and J. Klein, J. Chem. Phys. 108 (1998) 7010.

    Article  CAS  Google Scholar 

  19. U. Landman, W.D. Luedtke and A. Nitzan, Surf. Sci. 210 (1989) L177.

    Article  CAS  Google Scholar 

  20. J. Gao, W.D. Luedtke and U. Landman, Science 270 (1995) 605.

    CAS  Google Scholar 

  21. U. Landman, W.D. Luedtke and J. Gao, Langmuir 12 (1996) 4514.

    Article  CAS  Google Scholar 

  22. J. Gao, W.D. Luedtke and U. Landman, J. Phys. Chem. B 102 (1998) 5033.

    Article  CAS  Google Scholar 

  23. P.A. Thompson and M.O. Robbins, Science 250 (1990) 792.

    CAS  Google Scholar 

  24. M.O. Robbins, P.A. Thompson and G.S. Grest, MRS Bulletin May (1993) 45.

    Google Scholar 

  25. M. Cieplak, E.D. Smith and M.O. Robbins, Science 265 (1994) 1209.

    CAS  Google Scholar 

  26. G. He, M.H. M¨user and M.O. Robbins, Science 284 (1999) 1650.

    Article  CAS  Google Scholar 

  27. J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, Phys. Rev. B 46 (1992) 9700.

    Article  CAS  Google Scholar 

  28. J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, MRS Bulletin May (1993) 50.

    Google Scholar 

  29. J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, J. Phys. Chem. 97 (1993) 6573.

    Article  CAS  Google Scholar 

  30. J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, Thin Solid Films 260 (1995) 205.

    Article  CAS  Google Scholar 

  31. M.D. Perry and J.A. Harrison, Thin Solid Films 290–291 (1996) 211.

    Article  Google Scholar 

  32. M.D. Perry and J.A. Harrison, J. Phys. Chem. B 101 (1997) 1364.

    Article  Google Scholar 

  33. J.A. Harrison and S.S. Perry, MRS Bulletin June (1998) 27.

    Google Scholar 

  34. K.J. Tupper and D.W. Brenner, Thin Solid Films 253 (1994) 185.

    Article  CAS  Google Scholar 

  35. J.N. Glosli and G.M. McClelland, Phys. Rev. Lett. 70 (1996) 1960.

    Article  Google Scholar 

  36. A. Koike and M. Yoneya, J. Chem. Phys. 105 (1996) 6060.

    Article  CAS  Google Scholar 

  37. A. Koike and M. Yoneya, J. Phys. Chem. B 102 (1998) 3669.

    Article  CAS  Google Scholar 

  38. M.G. Rozman, M. Urbakh and J. Klatter, Phys. Rev. Lett. 77 (1996) 683.

    Article  CAS  Google Scholar 

  39. N.N. Matsuzawa and N. Kishii, J. Phys. Chem. A 101 (1997) 10045.

    Article  CAS  Google Scholar 

  40. P. Padilla, J. Chem. Phys. 103 (1995) 2157.

    Article  CAS  Google Scholar 

  41. J. Simizu, H. Eda, M. Yoritsune and E. Ohmura, Nanotechnology 9 (1998) 118.

    Article  Google Scholar 

  42. J.N. Israelachvili and D. Tabor, Nature 241 (1973) 148.

    CAS  Google Scholar 

  43. G. Binnig, C.F. Quate and Ch. Gerber, Phys. Rev. Lett. 56 (1986) 930.

    Article  Google Scholar 

  44. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 49 (1982) 57.

    Article  Google Scholar 

  45. P. de Sainte Claire, K.C. Hass, W.F. Schneider and W.L. Hase, J. Chem. Phys. 106 (1997) 7331.

    Article  CAS  Google Scholar 

  46. J.M. Wittbrodt, W.L. Hase and H.B. Schlegel, J. Phys. Chem. B 102 (1998) 6539.

    Article  CAS  Google Scholar 

  47. K. Bolton, S.B.M. Bosio, W.L. Hase, W.F. Schneider and K.C. Hass, J. Phys. Chem. B 103 (1999) 3885.

    Article  CAS  Google Scholar 

  48. K.C. Hass, W.F. Schneider, A. Curioni and W. Andreoni, Science 282 (1998) 265.

    Article  CAS  Google Scholar 

  49. R.Y. Jin, D.J. Mann and W.L. Hase, in preparation.

  50. R.M. Slayton, C.M. Aubuchon, T.L. Camis, A.R. Noble and N.J. Tro, J. Phys. Chem. 99 (1995) 2151.

    Article  CAS  Google Scholar 

  51. S.Y. Nishimura, R.F. Gibbons and N.J. Tro, J. Phys. Chem. B 102 (1995) 6831.

    Article  Google Scholar 

  52. A. Berman, S. Steinberg, S. Campbell, A. Ulman and J. Israelachvili, Tribology Lett. 4 (1998) 43.

    Article  CAS  Google Scholar 

  53. Z. Xu, W. Ducker and J. Israelachvili, Langmuir 12 (1996) 2263.

    Article  CAS  Google Scholar 

  54. Cerius2, Molecular Simulations, Inc.

  55. V. Coustet and J. Jupille, Surf. Sci. 307–309 (1994) 1161.

    Article  Google Scholar 

  56. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III and W.M. Skiff, J. Am. Chem. Soc. 114 (1992) 10024.

    Article  CAS  Google Scholar 

  57. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren and J. Hermans, in: Intermolecular Forces, ed. B. Pullman (Reidel, Dordrecht, 1981) p. 331.

    Google Scholar 

  58. J.M. Haile, Molecular Dynamics Simulation(Wiley, New York, 1997).

    Google Scholar 

  59. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola and J.R. Haak, J. Chem. Phys. 81 (1984) 3684.

    Article  CAS  Google Scholar 

  60. W.L. Hase, ed., Intramolecular and Nonlinear Dynamics, Advances in Classical Trajectory Methods, Vol. 1 (JAI, London, 1992).

    Google Scholar 

  61. K.D. Ball and S. Berry, J. Chem. Phys. 109 (1998) 8541.

    Article  CAS  Google Scholar 

  62. D.H. Lu and W.L. Hase, J. Phys. Chem. 92 (1998) 3217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, D.J., Hase, W.L. Computer simulation of sliding hydroxylated alumina surfaces. Tribology Letters 7, 153–159 (1999). https://doi.org/10.1023/A:1019121420468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019121420468

Navigation