Skip to main content
Log in

On the Domain of Applicability of General Relativity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider the domain of applicability of general relativity (GR), as a classical theory of gravity, by considering its applications to a variety of settings of physical interest as well as its relationship with real observations. We argue that, as it stands, GR is deficient whether it is treated as a microscopic or a macroscopic theory of gravity. We briefly discuss some recent attempts at removing this shortcoming through the construction of a macroscopic theory of gravity. We point out that such macroscopic extensions of GR are likely to be nonunique and involve non-Riemannian geometrical frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. F. R. Ellis, in General Relativity and Gravitation, B. Bertotti, F. de Felici, and A. Pascolini, eds. (Reidel, Dordrecht, 1981), p. 215.

    Google Scholar 

  2. D. W. Sciama, Modern Cosmology (Cambridge University Press, Cambridge, 1971), Chap. 8.

    Google Scholar 

  3. J. Ehlers, in Relativity, Astrophysics and Cosmology, W. Israel, ed. (Reidel, Dordrecht, 1973).

    Google Scholar 

  4. J. Ehlers, F. A. E. Pirani, and A. Schild, in General Relativity. Papers in Honour of J. L. Synge, L. O'Raifeartaigh, ed. (Clarendon, Oxford, 1972), p. 63.

    Google Scholar 

  5. R. K. Tavakol and G. F. R. Ellis, Phys. Lett. A 130, 217 (1988).

    Google Scholar 

  6. A. Coley and R. K. Tavakol, Gen. Relat. Gravit. 24, 835 (1992).

    Google Scholar 

  7. G. F. R. Ellis, “Observations and cosmological models,” Preprint 1995/1, University of Cape Town, 1995.

  8. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  9. M. F. Shirokov and I. Z. Fisher, Astron. Zh. 39, 899 (1962) ( in Russian) [English translation: Sov. Astron. A.J. 6, 699 (1963) ].

    Google Scholar 

  10. A. Hemmerich, Astron. Astrophys. 185, 1 (1987).

    Google Scholar 

  11. R. M. Zalaletdinov, Gen. Relat. Gravit. 24, 1015 (1993).

    Google Scholar 

  12. A. Krasiński, Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  13. J. Ehlers, in Ninth Texas Symposium on Relativistic Astrophysics, J. Ehlers, J. J. Perry, and M. Walker, eds. (New York Academy of Sciences, New York, 1980), p. 279.

    Google Scholar 

  14. P. Havas, in Isolated Gravitating Systems in General Relativity, J. Ehlers, ed. (North–Holland, Amsterdam, 1979), p. 74.

    Google Scholar 

  15. P. Havas and J. N. Goldberg, Phys. Rev. 128, 398 (1962).

    Google Scholar 

  16. J. Ehlers, in General Relativity and Gravitation, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge, 1987), p. 61.

    Google Scholar 

  17. R. H. Schattner, “The structure of extended bodies in general relativity,” Ph.D. Thesis, University of Mü nich, unpublished.

  18. L. Infeld and A. Schild, Rev. Mod. Phys. 21, 408 (1949).

    Google Scholar 

  19. J. M. Nevin, Gen. Relat. Gravit. 27, 397 (1995).

    Google Scholar 

  20. A. Papapetrou, Lectures on General Relativity (Reidel, Dordrecht, 1974).

    Google Scholar 

  21. W. G. Dixon, in Isolated Gravitating Systems in General Relativity, J. Ehlers, ed. (North–Holland, Amsterdam, 1979), p. 156.

    Google Scholar 

  22. V. Fock, The Theory of Space Time and Gravitation (Pergamon, London, 1959).

    Google Scholar 

  23. T. Damour, in Gravitational Radiation, N. Deruelle et al., eds. (North–Holland, Amsterdam, 1983), p. 59.

    Google Scholar 

  24. J. Ehlers, Akad. Wiss. Lit. (Mainz) Abhandl. Math.–Nat. Kl. 11, 792 (1961) [English translation: Preprint, 1993/8, University of Cape Town, 1993].

    Google Scholar 

  25. H. A. Lorentz, The Theory of Electrons (Teubner, Leipzig, 1916).

    Google Scholar 

  26. S. T. deGroot and L. G. Suttorp, Foundations of Electrodynamics (North–Holland, Amsterdam, 1972).

    Google Scholar 

  27. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Pergamon Press, New York, 1975).

    Google Scholar 

  28. B. Mashhoon, Phys. Lett. A 143, 176 (1990).

    Google Scholar 

  29. S. Ikeda, Found. Phys. 13, 629 (1983).

    Google Scholar 

  30. M. N. Mahanta, Int. J. Theor. Phys. 23, 569 (1984).

    Google Scholar 

  31. F. W. Hehl, Found. Phys. 15, 451 (1985).

    Google Scholar 

  32. N. Bohr and L. Rosenfeld, Mat.–Fys. Medd. Dan. Vid. Selsk. 12, 8 (1933).

    Google Scholar 

  33. B. S. DeWitt, in General Relativity, An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979), p. 680.

    Google Scholar 

  34. B. Mashhoon, Phys. Lett. A 145, 147 (1990).

    Google Scholar 

  35. R. K. Tavakol and N. Van den Bergh, Gen. Relat. Gravit. 18, 849 (1986).

    Google Scholar 

  36. I. W. Roxburgh, Gen. Relat. Gravit. 23, 1071 (1991).

    Google Scholar 

  37. J. Ehlers, in Isolated Gravitating Systems in General Relativity, J. Ehlers, ed. (North–Holland, Amsterdam, 1979), p. 1.

    Google Scholar 

  38. W. Israel, in General Relativity. Papers in Honour of J.L. Synge, L. O'Raifeartaigh, ed. (Clarendon, Oxford, 1972), p. 201.

    Google Scholar 

  39. D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of Einstein's Field Equations (Deutscher Verlag der Wissenschaften and Cambridge University Press, Berlin and Cambridge, 1980).

    Google Scholar 

  40. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  41. R. M. Zalaletdinov and R. K. Tavakol, in progress.

  42. B. Carter, in General Relativity, An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979), p. 294.

    Google Scholar 

  43. J. Ehlers, “The Newtonian limit of general relativity,” Preprint 1989/1, University of Cape Town, 1989.

  44. W. K. H. Panowsky and M. Phillips, Classical Electricity and Magnetism (Addison–Wesley, Reading, Massachusetts, 1962).

    Google Scholar 

  45. S. W. Hawking and G. F. R. Ellis, The Large–Scale Structure of Spacetime (Cambridge University Press, Cambridge, 1973).

    Google Scholar 

  46. A. Lichnerowicz, Relativistic Hydrodynamics and Magnetodynamics (Benjamin, New York, 1967).

    Google Scholar 

  47. L. Rosenfeld, Theory of Electrons (Dover, New York, 1965).

    Google Scholar 

  48. R. M. Zalaletdinov, Gen. Relat. Gravit. 25, 673 (1993)

    Google Scholar 

  49. R. M. Zalaletdinov, Bull. Astron. Soc. India 25, 401 (1997).

    Google Scholar 

  50. D. C. Leslie, Developments in the Theory of Turbulence (Clarendon, Oxford, 1973).

    Google Scholar 

  51. R. M. Zalaletdinov, in Proceedings, International Symposium on Experimental Gravitation, M. Karim and A. Qadir, eds. (Institute of Physics, Bristol, 1994), p. A363.

    Google Scholar 

  52. R. M. Zalaletdinov, in Inhomogeneous Cosmological Models, A. Molina and J. M. M. Senovilla, eds. (World Scientific, Singapore, 1995), p. 91.

    Google Scholar 

  53. R. A. Isaacson, Phys. Rev. 166, 1272 (1968).

    Google Scholar 

  54. P. Szekeres, Ann. Phys. (N.Y.) 64, 599 (1971).

    Google Scholar 

  55. S. Bildhauer and T. Futamase, Gen. Relat. Gravit. 23, 1251 (1991).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakol, R., Zalaletdinov, R. On the Domain of Applicability of General Relativity. Foundations of Physics 28, 307–331 (1998). https://doi.org/10.1023/A:1018761005186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018761005186

Keywords

Navigation