Skip to main content
Log in

Quantum Formalism with State-Collapse and Superluminal Communication

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Given the collapse hypothesis (CH) of quantum measurement, EPR-type correlations along with the hypothesis of the impossibility of superluminal communication (ISC) have the effect of globalizing gross features of the quantum formalism making them universally true. In particular, these hypotheses imply that state transformations of density matrices must be linear and that evolution which preserves purity of states must also be linear. A gedanken experiment shows that Lorentz covariance along with the second law of thermodynamics imply a nonentropic version of ISC. Partial results using quantum logic suggest, given ISC and a version of CH, a connection between Lorentz covariance and the covering law. These results show that standard quantum mechanics is structurally unstable, and suggest that viable relativistic alternatives must question CH. One may also speculate that some features of the Hilbert-space model of quantum mechanics have their origin in space time structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Google Scholar 

  2. J. S. Bell, Physics 1, 195 (1964).

    Google Scholar 

  3. M. Redhead, Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics (Clarendon, Oxford, 1987).

    Google Scholar 

  4. P. H. Eberhard, Nuovo Cimento B 38, 75 (1977).

    Google Scholar 

  5. P. H. Eberhard, Nuovo Cimento B 46, 392 (1978).

    Google Scholar 

  6. G. C. Ghirardi and T. Weber, Lett. Nuovo Cimento 26, 599 (1979).

    Google Scholar 

  7. G. C. Ghirardi, A. Rimini, and T. Weber, Lett. Nuovo Cimento 27, 293 (1980).

    Google Scholar 

  8. N. Herbert, Found. Phys. 12, 1171 (1982).

    Google Scholar 

  9. D. Dieks, Phys. Lett. A 92, 271 (1982).

    Google Scholar 

  10. P. W. Milonni and M. L. Hardies, Phys. Lett. A 92, 321 (1982).

    Google Scholar 

  11. W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

    Google Scholar 

  12. Y. Aharonov and D. Albert, Phys. Rev. D 24, 359 (1981).

    Google Scholar 

  13. Y. Aharonov and D. Albert, Phys. Rev. D 29, 228 (1984).

    Google Scholar 

  14. A. R. Swift and R. Wright, J. Math. Phys. 21, 77 (1980).

    Google Scholar 

  15. A. M. Gleason, J. Math. Mech. 6, 885 (1957).

    Google Scholar 

  16. G. Ludwig, Foundations of Quantum Mechanics (Springer, New York, 1983).

    Google Scholar 

  17. C. Piron, Foundations of Quantum Physics (Benjamin, London, 1976).

    Google Scholar 

  18. P. Pearle, Phys. Rev. D 13, 857 (1976).

    Google Scholar 

  19. S. Weinberg, Phys. Rev. Lett. 62, 485 (1989).

    Google Scholar 

  20. S. Weinberg, Ann. Phys. (N.Y.) 194, 336 (1989).

    Google Scholar 

  21. N. Gisin, Phys. Lett. A 143, 1 (1990).

    Google Scholar 

  22. N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).

    Google Scholar 

  23. N. Gisin, Phys. Rev. Lett. 53, 1776 (1984).

    Google Scholar 

  24. N. Gisin, Helv. Phys. Acta 62, 363 (1989).

    Google Scholar 

  25. P. Pearle, Phys. Rev. Lett. 53, 1775 (1984).

    Google Scholar 

  26. P. Pearle, Phys. Rev. D 33, 2240 (1986).

    Google Scholar 

  27. G. Svetlichny, “Quantum Evolution and Space–Time Structure,” in H.–D. Doebner, V. K. Dobrev, and P. Nattermann, eds., Nonlinear, Deformed and Irreversible Quantum Systems. Proceedings of the International Symposium on Mathematical Physics, Arnold Sommerfeld Institute, 15–19 August 1994, Clausthal, Germany (World Scientific, Singapore, 1995) p. 246, or in a slightly expanded form on the Los Alamos electronic manuscript archive quant–ph/9512004.

    Google Scholar 

  28. G. Svetlichny, J. Nonlinear Math. Phys. 2, 2 (1995).

    Google Scholar 

  29. G. A. Goldin, in Nonlinear, Deformed, and Irreversible Quantum Systems, H.–D. Doebner, V. K. Dobrev, and P. Nattermann, eds. (World Scientific, Singapore, 1995), p. 125.

    Google Scholar 

  30. H.–D. Doebner and G. A. Goldin, Phys. Rev. A 54, 3746 (1996).

    Google Scholar 

  31. H.–D. Doebner, G. A. Goldin, and P. Nattermann, in Quantization, Coherent States, and Complex Structures, J.–P. Antoine, S. T. Ali, W. Lisiecki, I. M. Mladenov, and A. Odzijewicz, eds. ( Plenum, New York, 1995), p. 27.

    Google Scholar 

  32. C. Schnorr, Zufälligkeit und Wahrscheinlichkeit (Lecture Notes in Mathematics, Vol. 218) (Springer, Berlin, 1971).

    Google Scholar 

  33. L. Brillouin, J. Appl. Phys. 22, 334 (1951).

    Google Scholar 

  34. L. Brillouin, J. Appl. Phys. 22, 338 (1951).

    Google Scholar 

  35. A. C. Elitzur, Phys. Lett. A 167, 335 (1992).

    Google Scholar 

  36. W. Guz, Ann. Inst. Henri Poincaré XXIX4, 357 (1978).

    Google Scholar 

  37. W. Guz, Rep. Math. Phys. 17, 385 (1980).

    Google Scholar 

  38. W. Guz, Ann. Inst. Henri Poincaré XXXIV4, 373 (1981).

    Google Scholar 

  39. D. Home and S. Sengupta, Phys. Lett. A 102, 159 (1984).

    Google Scholar 

  40. S. Weinberg, Dreams of a Final Theory (Vintage Books, 1992), pp. 88–89.

  41. J. B. Hartle, “Spacetime quantum mechanics and the quantum mechanics of spacetime,” in 1992 Les Houches Ecole d'é té, Gravitation et Quantifications.

  42. R. Omnés, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994).

    Google Scholar 

  43. V. Bargmann, J. Math. Phys. 5, 862 (1964).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svetlichny, G. Quantum Formalism with State-Collapse and Superluminal Communication. Foundations of Physics 28, 131–155 (1998). https://doi.org/10.1023/A:1018726717481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018726717481

Keywords

Navigation