Skip to main content
Log in

Sharp Phase Boundaries for a Lattice Flux Line Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a model of nonintersecting flux lines in a rectangular region on the lattice \(\mathbb{Z}\) d, where each flux line is a non-isotropic self-avoiding random walk constrained to begin and end on the boundary of the region. The thermodynamic limit is reached through an increasing sequence of such regions. We prove the existence of several distinct phases for this model, corresponding to different regimes for the flux line density—a phase with zero density, a collection of phases with maximal density, and at least one intermediate phase. The locations of the boundaries of these phases are determined exactly for a wide range of parameters. Our results interpolate continuously between previous results on oriented and standard nonoriented self-avoiding random walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4:287–293 (1963).

    Google Scholar 

  2. F. Y. Wu, Exactly solvable model of the ferroelectric phase transition in two dimensions, Phys. Rev. Lett. 18:605–607 (1967).

    Google Scholar 

  3. F. Y. Wu, Remarks on the modified potassium dihydrogen phosphate model of a ferroelectric, Phys. Rev. 168:539–543 (1968).

    Google Scholar 

  4. M. E. Fisher, Walks, walls, wetting, and melting, J. Stat. Phys. 34:667–729 (1984).

    Google Scholar 

  5. M. den Nijs, The domain wall theory of two-dimensional commensurate-incommensurate phase transitions, Phase Transitions and Critical Phenomena, Vol. 12, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1988), pp. 219–333.

    Google Scholar 

  6. J. F. Nagle, Statistical mechanics of the melting transition in lattice models of polymers, Proc. R. Soc. Lond. A 337:569–589 (1974).

    Google Scholar 

  7. C. S. O. Yokoi, J. F. Nagle, and S. R. Salinas, Dimer pair correlations on the brick lattice, J. Stat. Phys. 44:729–747 (1986).

    Google Scholar 

  8. J. F. Nagle, Proof of the first order phase transition in the Slater KDP model, Commun. Math. Phys. 13:62–67 (1969).

    Google Scholar 

  9. D. R. Nelson, Vortex entanglement in high-Tcsuperconductors, Phys. Rev. Lett. 60:1973–1976 (1988).

    Google Scholar 

  10. D. R. Nelson, Statistical mechanics of flux lines in high-Tc superconductors, J. Stat. Phys. 57:511 (1989).

    Google Scholar 

  11. D. R. Nelson and H. S. Seung, Theory of melted flux liquids, Phys. Rev. B 39:9153–9174 (1989).

    Google Scholar 

  12. H. Y. Huang and F. Y. Wu, Exact solution of a lattice model of flux lines in superconductors, Physica A 205:31–40 (1994).

    Google Scholar 

  13. C. Borgs, J. T. Chayes, and C. King, Meissner phase for a model of oriented flux lines, J. Phys. A: Math. Gen. 28:6483–6499 (1995).

    Google Scholar 

  14. S. M. Bhattacharjee and J. J. Rajasekaran, Absence of anomalous dimension in vertex models: semidilute solution of directed polymers, Phys. Rev. A 44:6202–6212 (1991).

    Google Scholar 

  15. J. F. Nagle, Theory of biomembrane phase transitions, J. Chem. Phys. 58:252–264 (1973).

    Google Scholar 

  16. T. Izuyama and Y. Akutsu, Statistical mechanics of biomembrane phase transitions I. Excluded volume effects of lipid chains in their conformation change, J. Phys Soc. Jpn. 51:50 (1982).

    Google Scholar 

  17. S. M. Bhattacharjee, Vertex model in d dimensions: an exact result, Europhys. Lett. 15:815–820 (1991).

    Google Scholar 

  18. F. Y. Wu and H. Y. Huang, Exact solution of a vertex model in d dimensions, Lett. Math. Phys. 29:205–213 (1993).

    Google Scholar 

  19. J. F. Nagle, C. S. O. Yokoi, and S. M. Bhattacharjee, Dimer models on anisotropic lattices, Phase transitions and Critical Phenomena, Vol. 13, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1989), pp. 235–279.

    Google Scholar 

  20. S. M. Bhattacharjee, S. M. Nagle, D. A. Huse, and M. E. Fisher, Critical behavior of a three-dimensional dimer model, J. Stat. Phys. 32:361–374 (1983).

    Google Scholar 

  21. N. Madras, Critical behaviour of self-avoiding walks that cross a square, J. Phys. A. 28:1535–1547 (1995).

    Google Scholar 

  22. N. Madras and G. Slade, The Self-Avoiding Walk(Birkhauser, Boston, 1993).

  23. J. T. Chayes and L. Chayes, Ornstein–Zernike behavior for self-avoiding walks at all noncritical temperatures, Commun. Math. Phys. 105:221–238 (1986).

    Google Scholar 

  24. C. Borgs, J. T. Chayes, C. King, and N. Madras, Antisotropic self-avoiding walks (in preparation).

  25. J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quart. J. Math. Oxford 13:108–110 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgs, C., Chayes, J.T., King, C. et al. Sharp Phase Boundaries for a Lattice Flux Line Model. Journal of Statistical Physics 98, 1075–1113 (2000). https://doi.org/10.1023/A:1018611627599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018611627599

Navigation