Skip to main content
Log in

Optimal Estimation and Cramér-Rao Bounds for Partial Non-Gaussian State Space Models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Partial non-Gaussian state-space models include many models of interest while keeping a convenient analytical structure. In this paper, two problems related to partial non-Gaussian models are addressed. First, we present an efficient sequential Monte Carlo method to perform Bayesian inference. Second, we derive simple recursions to compute posterior Cramér-Rao bounds (PCRB). An application to jump Markov linear systems (JMLS) is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, B. D. O. and Moore, J. B. (1979). Optimal Filtering, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Bar-Shalom, Y. and Li, X. R. (1995). Multitarget-multisensor Tracking: Principles and Techniques, YBS Publishing.

  • Bergman, N. (1999). Recursive Bayesian estimation: Navigation and tracking applications, Ph.D. Thesis, Department of Automatic Control, University of Linköping, Sweden.

    Google Scholar 

  • Bergman, N., Ljung, L. and Gustafsson, F. (1999). Terrain navigation using Bayesian statistics, IEEE Control Systems Magazine, 19, 33-40.

    Google Scholar 

  • Borobsky, B. Z. and Zakai, M. (1975). A lower bound on the estimation error for Markov processes, IEEE Trans. Automat. Control, 20(6), 785-788.

    Google Scholar 

  • Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models, Biometrika, 81(3), 541-553.

    Google Scholar 

  • Carter, C. K. and Kohn, R. (1996). Markov chain Monte Carlo methods in conditionally Gaussian state space models, Biometrika, 83, 589-601.

    Google Scholar 

  • Crisan, D. (2001). Particle filters—A theoretical perspective, Sequential Monte Carlo Methods in Practice (eds. A. Doucet, De Freitas and N. J. Gordon), ISBN: 0-387-95146-6, Springer, New York.

    Google Scholar 

  • Crisan, D. and Doucet, A. (2000). Convergence of sequential Monte Carlo methods, CUED/F-INFENG/TR381, Cambridge University.

  • Crisan, D., Del Moral, P. and Lyons, T. (1999). Discrete filtering using branching and interacting particle systems, Markov Processes and Related Fields, 5(3), 293-318.

    Google Scholar 

  • Del Moral, P. and Guionnet, A. (1998). On the Stability of Measure Valued Processes. Applications to Non Linear Filtering and Interacting Particle Systems, Laboratoire de Statistiques et Probabilités, Toulouse.

    Google Scholar 

  • Doerschuk, P. C. (1995). Cramér-Rao bounds for discrete-time nonlinear filtering problems, IEEE Trans. Automat. Control, 40(8), 1465-1469.

    Google Scholar 

  • Doucet, A. (1997). Monte Carlo methods for Bayesian estimation of hidden Markov models, Ph.D. Thesis, Department of Electrical Engineering, University of Paris-Sud, Orsay, France (in French).

    Google Scholar 

  • Doucet, A. and Andrieu, C. (1999). Iterative algorithms for state estimation of jump Markov linear systems, CUED/F-INFENG/TR353, Cambridge University.

  • Doucet, A., de Freitas, J. F. G. and Gordon N. J. (eds.) (2001). Sequential Monte Carlo Methods in Practice, ISBN: 0-387-95146-6, Springer, New York.

    Google Scholar 

  • Doucet, A., Godsill S. J. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering, Statist. Comput., 10(3), 197-208.

    Google Scholar 

  • Früwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models, J. Time Ser. Anal., 15, 183-202.

    Google Scholar 

  • Galdos, J. I. (1980). A Cramér-Rao bound for discrete-time nonlinear filtering problems, IEEE Trans. Automat. Control, 25(1), 117-119.

    Google Scholar 

  • Gilks, W. R. and Berzuini, C. (1998). Following a moving target—Monte Carlo inference for dynamic Bayesian models (submitted to J. Roy. Statist. Soc. Ser. B).

  • Gill, R. D. and Levit, B. Y. (1995). Applications of the Van Trees inequality: a Bayesian Cramér Rao bound, Bernoulli, 1, 59-79.

    Google Scholar 

  • Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings-F, 140(2), 107-113.

    Google Scholar 

  • Higuchi, T. (1997). Monte Carlo filter using the genetic algorithm operators, J. Statist. Comput. Simulation, 59(1), 1-23.

    Google Scholar 

  • Kerr, T. (1989). Status of Cramér-Rao lower bounds for nonlinear filtering, IEEE Transactions on Aerospace and Electronic Systems, 25, 590-601.

    Google Scholar 

  • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Statist., 5(1), 1-25.

    Google Scholar 

  • Kitagawa, G. and Gersch, W. (1996). Smoothness Priors Analysis of Time Series, Springer, New York.

    Google Scholar 

  • Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems, J. Amer. Statist. Assoc., 93, 1032-1044.

    Google Scholar 

  • Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: auxiliary particle filters, J. Amer. Statist. Assoc., 94, 590-599.

    Google Scholar 

  • Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods, Springer, New York.

    Google Scholar 

  • Shephard, N. (1994). Partial non-Gaussian times series models, Biometrika, 81, 115-131.

    Google Scholar 

  • Tichavský, P., Muravchik, C. and Nehorai, A. (1998). Posterior Cramér-Rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing, 46(5), 1386-1396.

    Google Scholar 

  • van Trees, H. L. (1968). Detection, Estimation and Modulation Theory, Wiley, New York.

    Google Scholar 

  • West, M. (1993a). Approximating posterior distributions by mixtures, J. Roy. Statist. Soc. Ser. B, 55, 409-422.

    Google Scholar 

  • West, M. (1993b). Mixture models, Monte Carlo, Bayesian updating and dynamic models, Computing Science and Statistics, 24, 325-333.

    Google Scholar 

  • West, M. and Harrison, P. J. (1997). Bayesian Forecasting and Dynamic Models, 2nd ed. Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bergman, N., Doucet, A. & Gordon, N. Optimal Estimation and Cramér-Rao Bounds for Partial Non-Gaussian State Space Models. Annals of the Institute of Statistical Mathematics 53, 97–112 (2001). https://doi.org/10.1023/A:1017920621802

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017920621802

Navigation