Skip to main content
Log in

Periodic Orbit Quantization: How to make Semiclassical Trace Formulae Convergent

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose two different methods for semiclassical quantization. The first method is based upon the harmonic inversion of semiclassical recurrence functions. A band-limited periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. The frequencies of the periodic orbit signal are the semiclassical eigenvalues, and are determined by either linear predictor, Padé approximant, or signal diagonalization. The second method is based upon the direct application of the Padé approximant to the periodic orbit sum. The Padé approximant allows the resummation of the, typically exponentially, divergent periodic orbit terms. Both techniques do not depend on the existence of a symbolic dynamics, and can be applied to bound as well as to open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller, J. Math. Phys. 8, 1979-2000 (1967); 12, 343-358 (1971).

    Google Scholar 

  2. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Google Scholar 

  3. M. V. Berry and M. Tabor, Proc. R. Soc. London A 349, 101-123 (1976); J. Phys. A 10, 371 (1977).

    Google Scholar 

  4. P. Cvitanović P and B. Eckhardt, Phys. Rev. Lett. 63, 823-826 (1989).

    Google Scholar 

  5. M. V. Berry and J. P. Keating, J. Phys. A 23, 4839-4849 (1990); Proc. R. Soc. London A 437, 151-173 (1992).

    Google Scholar 

  6. E. B. Bogomolny, Chaos 2, 5-13 (1992); Nonlinearity 5, 805-866 (1992).

    Google Scholar 

  7. R. Aurich, C. Matthies, M. Sieber, and F. Steiner, Phys. Rev. Lett. 68, 1629-1632 (1992).

    Google Scholar 

  8. J. Main, V. A. Mandelshtam, and H. S. Taylor, Phys. Rev. Lett. 79, 825-828 (1997).

    Google Scholar 

  9. J. Main, V. A. Mandelshtam, G. Wunner, and H. S. Taylor, Nonlinearity 11, 1015-1035 (1998).

    Google Scholar 

  10. J. Main and G. Wunner, Phys. Rev. A 59, R2548-R2551 (1999).

    Google Scholar 

  11. J. Main and G. Wunner, Phys. Rev. Lett. 82, 3038-3041 (1999).

    Google Scholar 

  12. J. Main, Phys. Rep. 316, 233-338 (1999).

    Google Scholar 

  13. J. Main, P. A. Dando, Dž. Belkić, and H. S. Taylor, J. Phys. A 33, 1247-1263 (2000).

    Google Scholar 

  14. M. R. Wall and D. Neuhauser, J. Chem. Phys. 102, 8011-8022 (1995).

    Google Scholar 

  15. V. A. Mandelshtam and H. S. Taylor, Phys. Rev. Lett. 78, 3274-3277 (1997).

    Google Scholar 

  16. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 107, 6756-6769 (1997); 109, 4128 (1998) (erratum).

    Google Scholar 

  17. J. Main, P. A. Dando, Dzž. Belkić, and H. S. Taylor, Europhys. Lett. 48, 250-256 (1999).

    Google Scholar 

  18. G. A. Baker, Essentials of Padé Approximants (Academic, New York, 1975).

    Google Scholar 

  19. J. Čížek and E. R. Vrscay, Int. J. Quantum Chem. 21, 27 (1982); H. J. Silverstone, B. G. Adams, J. C8 @ z ek, and P. Otto, Phys. Rev. Lett. 43, 1498 (1979).

    Google Scholar 

  20. Dž. Belkić, J. Phys. A 22, 3003-3010 (1989).

    Google Scholar 

  21. B. Eckhardt and G. Russberg, Phys. Rev. E 47, 1578-1588 (1993).

    Google Scholar 

  22. Dž. Belkić, P. A. Dando, J. Main, and H. S. Taylor, J. Chem. Phys. 113, 6542-6556 (2000).

    Google Scholar 

  23. S. D. Silverstein and M. D. Zoltowski, Digital Signal Processing 1, 161-175 (1991).

    Google Scholar 

  24. Dž. Belkić, P. A. Dando, H. S. Taylor, and J. Main, Chem. Phys. Lett. 315, 135-139 (1999); Dz. Belkic, P. A. Dando, J. Main, H. S. Taylor, and S. K. Shin, J. Phys. Chem. A 104, 11677-11684 (2000); ibid. 105, 514 (2001) (erratum).

    Google Scholar 

  25. J. Main, V. A. Mandelshtam, and H. S. Taylor, Phys. Rev. Lett. 78, 4351-4354 (1997).

    Google Scholar 

  26. B. Grémaud and D. Delande, Phys. Rev. A 61, 032504 (2000).

    Google Scholar 

  27. Baron Gaspard Riche de Prony, Essai expérimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, diffrentes températures, Journal de l'E cole Polytechnique, Vol. 1, cahier 22, 22-76 (1795).

    Google Scholar 

  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd ed. (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  29. B. Eckhardt, G. Russberg, P. Cvitanović, P. E. Rosenqvist, and P. Scherer, in Quantum Chaos between Order and Disorder, G. Casati and B. V. Chirikov, eds. (Cambridge University Press, Cambridge, 1995), pp.405-433.

    Google Scholar 

  30. A. Wirzba, Phys. Rep. 309, 1-116 (1999).

    Google Scholar 

  31. I. M. Longman, Int. J. Comp. Math. B 3, 53 (1971).

    Google Scholar 

  32. P. Wynn, Mathematical Tables and Other Aids for Computations 10, 91 (1956); SIAM J. Numer. Anal. 3, 91 (1966); E. J. Weniger, Comp. Phys. Rep. 10, 189-371 (1989).

    Google Scholar 

  33. D. Shanks, J. Math. Phys. 34, 1 (1955).

    Google Scholar 

  34. J. Main, K. Weibert, and G. Wunner, Phys. Rev. E 58, 4436-4439 (1998).

    Google Scholar 

  35. J. Main and G. Wunner, Phys. Rev. E 60, 1630-1638 (1999); J. Main, K. Weibert, V. A. Mandelshtam, and G. Wunner, ibid, 1639-1642 (1999).

    Google Scholar 

  36. K. Weibert, J. Main, and G. Wunner, Eur. Phys. J. D 12, 381-401 (2000).

    Google Scholar 

  37. P. Cvitanović and B. Eckhardt, Nonlinearity 6, 277-311 (1993).

    Google Scholar 

  38. A. Voros, J. Phys. A 21, 685-692 (1988).

    Google Scholar 

  39. P. Cvitanović, P. E. Rosenqvist, G. Vattay, and H. H. Rugh, Chaos 3, 619-636 (1993).

    Google Scholar 

  40. P. Cvitanović and G. Vattay, Phys. Rev. Lett. 71, 4138-4141 (1993).

    Google Scholar 

  41. R. Balian and C. Bloch, Ann. Phys. 69, 76-160 (1972).

    Google Scholar 

  42. S. M. Reimann, M. Brack, A. G. Magner, J. Blaschke, and M. V. N. Murthy, Phys. Rev. A 53, 39-48 (1996).

    Google Scholar 

  43. I. C. Percival, Adv. Chem. Phys. 36, 1-61 (1977).

    Google Scholar 

  44. S. Hortikar and M. Srednicki, Phys. Rev. E 61, R2180-R2183 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Main, J., Wunner, G. Periodic Orbit Quantization: How to make Semiclassical Trace Formulae Convergent. Foundations of Physics 31, 447–474 (2001). https://doi.org/10.1023/A:1017587012035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017587012035

Keywords

Navigation